

NARSIS Workshop

Training on Probabilistic Safety Assessment for Nuclear Facilities September 2-5, 2019, Warsaw, Poland

Severe accident assessment with uncertainty and sensitivity analysis

Piotr Darnowski, Piotr Mazgaj Warsaw University of Technology

Severe Accident Assessment

- Prediction of NPP response to severe accident (SA)
- > Types of the severe accident tools:
 - □ Integral codes: MELCOR, MAAP, ASTEC.
 - Specific phenomena codes: ICARE/CATHARE, ATHLET_CD, RELAP/SCDAP, CONTAIN, COCOSYS
 - Specific integral codes sets: SAMPSON, RELAP/SCDAP CONTAIN VICTORIA, ATHLET-CD COCOSYS.
 - **CFD** are used for some detailed phenomena.

Level of details

- **Engineering Codes (i.e. MAAP)**
- **General Semi-Mechanistic Codes (MELCOR, ASTEC)**
- □ Mechanistic Codes (i.e. RELAP/SCDAPSIM)
- **CFD (i.e. OpenFoam)**

SA Assessment with Integral Codes

Integral codes allow to simulate whole plant

- > Typical goals:
 - Accident progression
 - **Containment performance**
 - □ Source term estimation
- Part of PSA Level 2
- Input for PSA Level 3
- Support of SA management, staff training etc.
- > The most popular codes:
 - □ ASTEC

 - MELCOR

SA Integral Codes

- Integral codes simulate almost all relevant phenomena
- Large experimental data portfolio
- Codes validated and verified (V&V)
 - □ MAAP, MELCOR >30 years
 - □ ASTEC >20 years

Sandia National

Vg# 33

models for lower head

ASTEC

MELCOR

Modeling and Analysis of Severe Accidents in Nuclear Power Plants

Modelling Experiments

cold leg

- Experimental facilities
 - Separate Effect Test
 - □ Integral Experiments
- > Usually we start with experiments
- Apply gained experience to simulate NPP

Modelling NPP

- Plant models
- Successful, experiment simulations does not guarantee successful plant simulations
- Large knowledge and experience is necesarry

SA Integral Simulations

- > Different codes can provide different results.
- > Different users can obtain different results with the same code (user effect).
- > Code cross comparison and benchmarks are improtant.

Uncertanities in SA

- > NPP is a complex system
- Severe accident phenomenology is also complex
- Uncertanities are unavoidable
- Experimental data uncertanities
- Models uncertanities
- Various factors influence SA assessment
 - □ Variability; systems, human factors, other
 - □ Lack of knowledge about details of the phemomena
 - □ In principle relevant phenomena are recgnized
 - □ Modelling precission, discretization (nodalziation)
 - **Codes, user effects, modeling approach**

Uncertainty qualification is unavoidable

Sensitivity and Uncertanity Analysis (S&UA)

> Typical S&UA in NPP

- **1. Identification of uncertain input variables/models**
- 2. Assigment of uncertanity information (distributions)
- 3. Determination of the sample size for the statistical significance of the uncertanity measures for the output variables.
- 4. Sampling.
- 5. Code execution
- 6. Post-processing of results.
- 7. Statistical analysis. Uncertanity and Senstivity quantification.
- 8. Study of individual cases/outliers.

Example – Hydrogen source term in FPT-1

- > Example MELCOR application FPT-1 integral experiment.
- H2 source term in Phebus FPT-1 test.
- Bascially: How much hydrogen was generated during the core degradatinon ?
- Uncertanity and sensitivity analysis.

Example – Tests and Simulations

- Use state-of-the art modeling best estimate calculation
- > Comparison with experimental data (if available).
- Comparison with the literature (if possible).
- Comparison with other codes (if possible).

International Standard Problem 46

Example – S&UA Methodology

Senstivity and Uncertanity Methodology (with MELCOR)

Example - Identification of uncertanities

- Identify uncertain input variables or models
- Identify probablity distributions
- > Example simple as there is Gantt report Ref. [3].
 - **D** Parameter #1 Zr melt breakout temperaute

No	Parameter	Probability	
		distribution	
0	Oxidation Rate Coefficients	Discrete,	
		Uniform	
1	Molten Material Holdup Parameters - Zr Melt Breakout	Normal	
	Temperature	Normai	
2	Core (Fuel) Component Failure Parameters - Fuel Rod Failure	Normal	
	Temperature	Normai	
3	Secondary Material Transport Parameters - Secondary UO2	Normal	
	Content	Normai	
4	Candling Heat Transfer Coefficient - Zr Freezing	Log-Normal	
			5
6	Debris porosity	Triangular	
7	Radiation Exchange Factor Radial	Normal	
8	Radiation Exchange Factor Axial	Normal	
9	Molten clad drainage rate	Log-Normal	

NARSIS WORKSHOP

Identification of uncertanities and distributions

Codes have dedicated tools to sample and pre-process and post-process

- MELCOR Uncertanity Engine
- ASTEC SUNSET Package
- > Typical distributions (i.e. for MELCOR)
 - **Uniform**
 - **Triangular**
 - **Normal**
 - **Expontential**
 - □ Log-normal
 - **Log-triangular**
 - □ Log-uniform
 - Beta
 - **Discrete**

Sample Size - Samuel Wilks

Samuel Wilks

S. S. Wilks, "Determination of Sample Sizes for Setting Tolerance Limits," Ann. Math. Stat., vol. 12, no. 1, pp. 91–96, 1941.

DETERMINATION OF SAMPLE SIZES FOR SETTING TOLERANCE LIMITS

By S. S. Wilks

Princeton University, Princeton, N. J.

1. Introduction. In the mass production of a given product or apparatus piece-part, Shewhart¹ has discussed a practical procedure for detecting the existence of assignable causes of variation in a given quality characteristic of the product as measured by a variable x. For example, x may be the thickness in inches of a washer or the tensile strength in pounds of a small aluminum casting made according to a given set of specifications; x varies in value from washer

Example – Sample Size

Select size of the sample.

- □ It takes ~3h per one run
- **Limited computational resource and more simulation can be too expensive**
- **D** Popular approach Wilks formula
- **Example 93 samples 95%/95%**

> More samples – greater % of distribution to be sample with higher confidence

$$C = 1 - n \cdot p^{n-1} + (n+1) \cdot p^n$$

Confidence	Sample Size to span p =			
Level				
(%)	0.9	0.95	0.99	0.999
90	37	76	388	3888
95	<u>46</u>	93	473	4742
99	64	130	661	6635
99.9	88	180	919	9228

Example – Sampling

> Sampling.

- □ SRS Simple Random Sampling
- □ LHS Latin Hypercube Sampling

Zr Melt Release Temperature

Sampling: Standard Random Sampling

N=5

N=15

N=115

Sampling: Latin Hypercube Sampling

N=5

standard

LHS

NARSIS WORKS

Latin Hypercube Sampling

Random Sampling

Example – Uncertanity

- Generate models with sampled values.
- Perform Simulations
- Post-process results.
- > Uncertanity analysis
 - **Confidence Intervals**
 - Example: Limits from the sample represents the 95% confidence interval within which 95% of all the possible values lie.

Example – Senstivity

- > Linear regression is simple & popular in the literature
- > Other more sofisticated are possible

NARSIS WORKSHOP

Example – Senstivity

- > Pearson (Linear) and Spearman (non-linear) are popular, other are also possible.
- For parameter #1, low p-value and "large" rho value indicates possible correlation (in Example it is weak).

Intermediate Break LOCA

Other example

Large Scale Test Facility in Japan

> 13% break size of the cold leg

Enhancement model of accumulator

Standard model of accumulator (gas expansion) changed to more realistic, based on experimental data

Enhancement model of accumulator how the uncertainties propagation changes

500

500

600

600

How do we know that our model is correct?

- After uncertainty modeling we can learn that we could commit errors in nodalization or boundary conditions, local measurements
- And what if there is no emperimental data ? How can we be sure that even after uncertainties analysis we are on the safe side ?

References

[1] Seghal, B. R., Nuclear Safety in Light Water Reactors – Severe Accident Phenomoneology, Pergamon Press, 2012.

[2] Jacquemain, D., Nuclear Power Reactor Core Melt Accidents – Current State of Knowledge, IRSN, EDP Sciences, 2015.

[3] Gauntt, R. O., An Uncertanity Analysis of the Hydrogen Source Term for a Station Blackout accident in Sequoyah Using MELCOR 1.8.5. SAND2014-2210, 2014.

[4] Modarres, M. Risk Analysis in EngineeringL Techniques, Tools and Trends, Taylor & Francis, 2006.

[5] Macian-Juan, R. Uncertanity Analysis in Best Estimate and Coupled Calculations – Lecture 5.3. Institute of Nuclear Engineering, TUM, Germany.

[6] SNL, "MELCOR Best Practices as Applied in the State-of-the-Art Reactor Consequence Analyses (SOARCA) Project," NUREG/CR-7008, 2014.

[7] H. Glaeser, "GRS Method for Uncertainty and Sensitivity Evaluation of Code Results and Applications," Sci. Technol. Nucl. Install. Vol. 2008, Artic. ID 798901,7pages doi10.1155/2008/798901, 2008

[8] SNL, "MELCOR 2.1 Computer Code Manual - Code Assessments," 2011.

[9] B. Clement and T. Haste, "Thematic Network for a Phebus FPT-1 International Standard Problem - Comparison Report on International Standard Problem ISP-46," 2003.

[10] B. Clément et al., "Thematic network for a Phebus FPT1 international standard problem (THENPHEBISP)," Nucl. Eng. Des., vol. 235, no. 2–4, pp. 347–357, 2005.

[11] U.S. NRC, NUREG/CR-7155: State-of-the-Art Reactor Consequence Analyses Project - Uncertainty Analysis of the Unmitigated Long-Term Station Blackout of the Peach Bottom Atomic Power Station. 2018.

[12] Gauntt, R. O., Uncertanity Analyses Using the MELCOR Severe Accident Analysis Code

[13] K. Ross, MELCOR Uncertanity Analysis Practices by Example SOARCA BWR LTSBO Scenario, Presentation. Sandia National Labs, EMUG Meeting.

[14] ASTEC Team, ASTEC/SUNSET Theoretical and practical aspects of uncertanity analysis, ASTEC TRAINING 2014.

Thank you for your attention <u>Piotr.Darnowski@pw.edu.pl</u> <u>Piotr.Mazgaj@pw.edu.pl</u>

NARSIS WORKSHOP