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Introduction
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Ø Fragility function = Probability of reaching or exceeding
a damage state given a level of loading
q Probabilistic tool (è uncertainty treatment)
q To be coupled with probabilistic hazard assessment outcomes
q Essential component of Probabilistic Safety Assessment

Ø Fragility functions may be:
q Empirical (from observed past events)
q Experiment-based
q Analysis-based

è Current practical methods and assumptions?
è Which types of uncertainty to consider?

Most common in nuclear 
applications
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General principles

Ø Notation

q Capitals → random variables
• IM = random Intensity Measure
• im → user-specified value (e.g. to define a threshold)

q Accents
• Median →!∎, e.g. 𝒊𝒎
• Regression estimate →%∎, e.g. &𝑬𝑫𝑷
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General Principles

Ø Conditional probability
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𝑃+ 𝑖𝑚 = 𝑃 𝐷𝑆 ≥ 𝑑𝑠 𝐼𝑀 = 𝑖𝑚

Ø The lognormal assumption

𝑃+ 𝑖𝑚 = Φ
ln 𝑖𝑚 − ln𝛼

𝛽

DS = Damage State
EDP = Engineering Demand Parameter
IM = Intensity Measure

α = median (=      )
β = standard-deviation

𝑃+ 𝑖𝑚 = 𝑃 𝐸𝐷𝑃 ≥ 𝐸𝐷𝑃=> 𝐼𝑀 = 𝑖𝑚or
(𝐷𝑆 ≥ 𝑑𝑠 ⇔ 𝐸𝐷𝑃 ≥ 𝐸𝐷𝑃=>)

𝒊𝒎



General Principles
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Ø Two major types of uncertainty
q Aleatory: inherent variability/randomness

of physical quantities (e.g. variability of ground-motion for 
seismic analysis)

q Epistemic: lack of complete knowledge, incomplete data or 
modelling assumptions

Ø Main causes of epistemic uncertainties
q In-situ uncertainty
q Modelling uncertainty
q Loading protocol uncertainty
q Finite sample uncertainty

Irreducible

Reducible with 
additional measures 

or testing

Especially for experiment- or 
analysis-based fragility 
functions



General Principles
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Ø The « double-lognormal » model
βR = aleatory randomness
βU = epistemic uncertainty

𝑃+ 𝑖𝑚 = Φ
ln 𝑖𝑚 − ln𝛼 + 𝛽AΦBC 𝑄

𝛽EF

𝑃+ 𝑖𝑚 = Φ
ln 𝑖𝑚 − ln𝛼

𝛽EF + 𝛽AF

IMHCLPF = IM level corresponding to a 5% probability of failure with a 95% 
confidence level (High Confidence Low Probability of Failure)

Composite “Mean” curve

Kennedy et al. (1980)

5% βC
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Ø Random variable
Ø Sequence of EQ of increasing intensity:

peak ground acceleration of the least 
intense EQ leading to failure of the SSC

Fragility can be viewed as the result
of a scaling exercise

𝑨: 𝛀 ⟼ ℝ

𝑨: El Centro accelerogram

𝑨 = 𝟎. 𝟔 𝒈
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Double log-normal model
Random experiment performed in two steps

𝑨 = P𝑨 Q 𝜺𝑼 Q 𝜺𝑹

𝜺𝑹~𝑳𝑵 𝟎, 𝜷𝑹 𝜺𝑼~𝑳𝑵 𝟎, 𝜷𝑼 0 1 2 3

1

2
PDF of epsilon_R
PDF of epsilon_U

dlnorm x 0, b_R, ( )

dlnorm x 0, b_U, ( )

x
Ø Example of probability density functions 

(PDF) 𝜷𝑹 = 𝟎. 𝟐, 𝜷𝑼 = 𝟎. 𝟑

P𝑨: Median value of the population
of scaling factors that lead to
onset of failure

𝜺𝑹: 𝛀𝟏 ↦ ℝ
𝜺𝑼: 𝛀𝟐 ↦ ℝ

Randomness and uncertainty modeled as two
distinct (subsequent!) random experiments: 



State-of-the-art

Ø Separation of variables (Safety Factors)

Ø Numerical analyses

Ø Hybrid methods (Bayesian udpating)

September 2-5, 2019, Warsaw, Poland |NARSIS WORKSHOP Page 10



Separation-of-Variables Method
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𝑎, 𝐴→ ground motion (peak ground acceleration)
𝛽 → variability (logarithmic standard deviation)
Φ→ cumulative standard normal distribution 
function

�̀� = a𝐹 ⋅ 𝐴dde

a𝐹 = a𝐹Ed ⋅ a𝐹Ee ⋅ a𝐹f

a𝐹f = a𝐹d ⋅ a𝐹g

Fr 𝑎 = Φ
ln 𝑎

�̀�
𝛽

a𝐹d =
𝑆 − 𝑃j

𝑃k,dde − 𝑃j

► Margin factor
(cumulative, median)

► Capacity factor

► Strength factor
• Failure mode dependent

(ultimate stress, elastic limit, deformation, …)
• S → strength
• P → demand (e.g. stress); PT,SSE → total demand in case of SSE
• PN → demand under normal conditions (no seismic loads)

Scaling (of SSE loads):
- Convenient because we can use

results from deterministic calculations
(SSE → safe shutdown earthquake → 
„design earthquake“); → reason why
this method has been used in 99% 
of the cases in NPP practice

- Tolerated for rock sites
- Caution for soil sites, if spectral shape

of UHS is different from SSE!
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Separation-of-Variables Method
Why subtract non-seismic loads in strength factor?

σallow

σN σSSE

σT,SSE

FS · σSSEσN

FS · σSSE = σallow - σN 

FS always larger than FD because – besides scaling σSSE - we are also 
scaling σN . 
(Red box will be full EARLIER.)

FD · σT,SSE = σallow

FS – Scaling seismic load only

FD – Scaling all loads composing
σT,SSE
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Ø Assumption of a given design level IMs

Ø The safety factor F represents the design margin

𝛼 = 𝐼𝑀l ⋅ 𝐹

Decomposition of F for a structure subjected to seismic loading:

𝐹 = 𝐹d ⋅ 𝐹g ⋅ 𝐹dE

𝐹dE = 𝐹dm ⋅ 𝐹nop ⋅ 𝐹q ⋅ 𝐹o ⋅ 𝐹of ⋅ 𝐹ef ⋅ 𝐹ddp

Decomposition of the dispersion term (quadratic combination):

𝛽A = 𝛽dF + 𝛽gF + 𝛽dmF + 𝛽nopF + 𝛽q
F + 𝛽oF + 𝛽ofF + 𝛽efF + 𝛽ddpF Same formulation 

for βR

Strength / Energy dissipation / Structural response

EPRI (1994)
EPRI (2003)
EPRI (2009)

Separation-of-Variables Method
« Divide et impera »



Numerical Analyses
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Ø Overview of the problem

IM

ED
P

Usually obtained from numerical simulations
(but also from experiments, observations from past events, etc.)



Numerical Analyses
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Ø Least-Squares regression on the IM-EDP cloud

ln&𝐸𝐷𝑃 = a + b ln 𝐼𝑀 + 𝜀

Cornell et al. (2002)

Linear relation between the logarithms
è adequacy with the lognormal assumption

Error term: 𝜀 ∼ 𝒩 0, 𝜎

𝛼 = exp
ln𝐸𝐷𝑃=> − 𝑎

𝑏
𝛽 =

𝜎
𝑏

Identification of 
fragility parameters:



Numerical Analyses
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Ø Maximum Likelihood Estimation (MLE)

Shinozuka et al. (2000)

EDP è binary damage variable Y:
}𝑦� = 1 if 𝑒𝑑𝑝� ≥ 𝐸𝐷𝑃=>
𝑦� = 0 if 𝑒𝑑𝑝� < 𝐸𝐷𝑃=>

Assumption: binomial or Bernoulli distribution for Y
è Expression of the likelihood function of the fragility parameters 
α and β, given N data points:

𝐿 𝛼, 𝛽 =�
��C

j

𝑃+ 𝑖𝑚�, 𝛼, 𝛽
�� 1 − 𝑃+ 𝑖𝑚�, 𝛼, 𝛽

CB��

�𝛼, �𝛽 = 𝑎𝑟𝑔max
�,�

𝐿 𝛼, 𝛽 Optimisation problem



Numerical Analyses
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Ø Generalised Linear Method (GLM) regression
EDP è binary damage variable Y:

}𝑦� = 1 if 𝑒𝑑𝑝� ≥ 𝐸𝐷𝑃=>
𝑦� = 0 if 𝑒𝑑𝑝� < 𝐸𝐷𝑃=>

Fitting a linear combination of the input (based on Y):

𝑔 𝑃+ 𝑖𝑚 = 𝑐C + 𝑐F ln 𝑖𝑚

By identification

Link function: 𝑔 = ΦBC 𝑃+ 𝑖𝑚 = Φ 𝑐C + 𝑐F ln 𝑖𝑚

𝛼 = exp −
𝑐C
𝑐F

𝛽 =
1
𝑐F

(Probit model)

Other options:
Logit, Loglog…



Bayesian Updating
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Ø Application of Bayes’ rule

𝑝��l= 𝜃|𝑦 ∝ 𝑝����� 𝜃 . 𝑝 𝑦|𝜃 θ = fragility parameters {α , β}
y = evidence (data gathered from 
experiments, observed damage)

Wang et al. (2018)

A priori 
distribution of 
parameters

Updated parameters, 
given evidence

Likelihood of 
observations



Summary of Methods

September 2-5, 2019, Warsaw, Poland |NARSIS WORKSHOP Page 19

Method Added value Main limits Example
Separation-
of-Variables

- Reuse existing design calculations 
(high level of quality assurance!)
-> cost-effective, good enough for 
vast majority of components;

- Assumes linearity of demand 
w.rt. IM (partial correction with 
inelastic energy absorption 
factor);

- EPRI TR-103959 (1994)

Regression 
“on a cloud”

- Simple and intuitive approach;

- Stable fragility estimates may be 
obtained with a few data points;

- Constrained by the functional 
form of the IM-EDP relationship;

- Constant standard-deviation 
over the IM range;

- Seismic fragility of an RC 
structure (Seyedi et al., 
2010)

MLE / GLM 
regression

- Applicable to empirical fragility 
assessment (if only damage data 
are available);

- Ability to treat complete
damage/collapse cases (where EDP 
values are usually inaccurate);

- Compatible with multivariate 
regression;

- Loss of information (i.e., the true 
values of the EDP are not used);

- More data points are required to 
achieve stable fragility estimates;

- Seismic fragility of a 
masonry structure (Gehl 
et al., 2013);

- Empirical tsunami 
fragility of buildings (De 
Risi et al., 2017);

Bayesian 
updating

- Compatible with expert-judgment 
approaches or
Experimental results;

- Influence of the prior 
distribution on the final fragility 
estimates;

- Seismic fragility of 
switchgear cabinets 
(Wang et al., 2018)



Selection of Seismic IMs
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Ø Complexity of the ground-motion time histories

Same PGA

è Frequency content?
è Energy content?
è Duration of strong motion?
è Number of loading cycles?

Record-to-record variability



Selection of Seismic IMs
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Ø Selection criteria
q Efficiency: ability of an IM to induce a low dispersion in the 

distribution of the structural response

q Sufficiency: ability of an IM to “carry” the characteristics of 
the earthquake that generated the ground motion

q Practicality: strength of the link between IM and EDP

Luco & Cornell (2007)
Padgett et al. (2008)

ln&𝐸𝐷𝑃 = a + b ln 𝐼𝑀 + 𝜀 Low σε è High efficiency

𝑃 𝐸𝐷𝑃 �̈�� = 𝑃 𝐸𝐷𝑃 𝐼𝑀(�̈��)If è IM is sufficient

ln&𝐸𝐷𝑃 = a + b ln 𝐼𝑀 + 𝜀 Large b è High practicality



Selection of Seismic IMs
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Ø Selection criteria
q Proficiency: combination of practicality and efficiency

q Computability or Hazard compatibility: ability to compute the 
selected IM accurately with current GMPEs

Luco & Cornell (2007)
Padgett et al. (2008)

ln&𝐸𝐷𝑃 = a + b ln 𝐼𝑀 + 𝜀 Large b/σε ratio è High proficiency

1. IM associated with many well-constrained GMPEs (good estimation of the epistemic uncertainty)
2. IM associated with few well-constrained GMPEs (difficulty to judge the epistemic uncertainty)
3. IM associated with no reliable GMPEs

Computability grade IM

1 PGA, PGV, AI, SA(T), RSD75, RSD95

2 PGD, ASI, SI, NED, JMA, CAV, NCy

3 ARMS, A95, SL75, SL95, SMA, SMV, DCy



Selection of Seismic IMs
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Ø Other methods to evaluate IMs / models
q Akaike Information Criteria (AIC):

q ROC (Receiver Operating Characteristics) analysis:

𝐴𝐼𝐶 = 2𝑘 − 2 ln 𝐿 k = number of parameters
L = likelihood function

è Evaluates 
goodness-of-fit

Gehl et al.
(2013)

Construction of the ROC curve with
increasing thresholds of damage 
probabilities:

Sensitivity =
True Positive

True Positive + False Negative

Speciicity =
True Negative

True Negative + False Positive



Multi-Variate Fragility Functions
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Ø Motivations
q Case of seismic loading: no single IM can perfectly fulfil the 

conditions of efficiency and sufficiency
q Other hazard loadings (e.g., flooding, wind): a combination

of IMs is usually required (e.g., velocity, height)

Gehl et al. (2013)

Multi-variate seismic fragility 
of a masonry building

Multi-variate seismic fragility 
of a bridge system

Li et al. (2014)



Multi-Variate Fragility Functions
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Ø Vector-IM fragility functions (or “fragility surfaces”)

Functional form: 𝑃+ 𝑖𝑚C, 𝑖𝑚F = 𝑃 𝐷𝑆 ≥ 𝑑𝑠 𝐼𝑀C = 𝑖𝑚C, 𝐼𝑀F = 𝑖𝑚F

=
1
2 1 + erf 𝑐C + 𝑐F ln 𝑖𝑚C + 𝑐® ln 𝑖𝑚®

è Multi-variate GLM regression to estimate c1, c2, c3

Possibility of defining a composite IM: 𝑖𝑚¯ = 𝑖𝑚C

°±
°±²°³ ⋅ 𝑖𝑚F

°³
°±²°³

𝑃+ 𝑖𝑚C, 𝑖𝑚F
= 𝑃+ 𝑖𝑚¯

= Φ
ln 𝑖𝑚¯ − ln𝛼¯

𝛽¯

𝛼¯ = exp −
𝑐C

𝑐F + 𝑐®

𝛽¯ =
1

𝑐F + 𝑐® 2
By identification



Multi-Variate Fragility Functions
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Ø Vector-IM fragility functions (or “fragility surfaces”)
q Steeper “slope” of the vector-IM fragility functions (reduction 

of the record-to-record variability)
q Need for a careful selection of IMs (issue of cross-correlation 

between IMs)

Gehl et al. (2013)

Example:
Yielding Collapse



Multi-Variate Fragility Functions
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Correlation map of 
various IM types 
(Pellissetti et al., 
2019)



Application
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Ø Model of a PWR main steam line
q Coupled model of a supporting structure and a steam line
q CAST3M model from Rahni et al. (2017)
q Derivation of fragility functions accounting for epistemic 

uncertainties and record-to-record variability

containment building steel steam line

vertical stop

Rahni et al. (2017)



Application
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Ø Variation of structural and geometrical properties

Rahni et al. (2017)

Generation of 360 model samples



Application
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Ø Selection of ground-motion records
q Conditional spectrum approach (Lin et al., 2013)
q Conditioning period T1 = 0.38s
q Selection for the PEER database (PEER, 2013)

Gehl et al. (2019)



Application
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Ø Non-linear time-history analyses
q 360 data points

q Failure criterion: load applied at the vertical stop = 400 kN

Gehl et al. (2019)



Application
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Ø Selection of single IMs

Gehl et al. (2019)



Application
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Ø Selection of vector IMs

è Slightly better 
performance than single IMs

è Some irrelevant 
parameters as single IMs 
now become useful (RSD)

è Interesting combinations:
[SA(0.29s) - PGA]
[SA(0.50s) - PGA]
[SA(0.29s) - SI]
[PGA - SI]

Gehl et al. (2019)



Application
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Ø Iso-probability lines of some fragility surfaces

Gehl et al. (2019)



Application
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Ø Uncertainty due to record-to-record variability
“Slices” of fragility surface è 2-D fragility curves

“Median” fragility curve with 
confidence bounds (vector-IM)

“Mean” fragility curve (single-IM)
βC = 0.390

βR ≈ 0.347
βU,1 ≈ 0.174

Gehl et al. (2019)



Application
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Ø Uncertainty due to statistical estimation of parameters
Bootstrap sampling to estimate the variation of the median parameter

βR = 0.347
βU,2 = 0.048

è Very small contribution to the total uncertainty (enough data points?)

Gehl et al. (2019)



Application
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Ø Uncertainty due to mech. and geom. parameters
Multi-variate GLM regression, adding 3 thickness parameters (e2, e4, e6)

βR = 0.223
βU,3 = 0.268

è Large contribution 
of these modelling 
parameters

𝑔 𝑃+
= 𝑐C + 𝑐F ln 𝑖𝑚C + 𝑐® ln 𝑖𝑚F
+ 𝑐´𝑒F + 𝑐µ𝑒´ + 𝑐¶𝑒¶

Gehl et al. (2019)



Application
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Ø Decomposition of uncertainty terms

è Reducing βU leads to 
a larger HCLPF

Link with HCLPF formulation:
𝑆𝐴 0.29s ¸f¹º» = 𝛼dm. exp − 𝛽E + 𝛽A .ΦBC 0.95

Gehl et al. (2019)



Validity of lognormal assumption?
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Ø Distribution of the structural response of bridge columns

Karamlou & Bocchini (2015)



Validity of lognormal assumption?
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Ø Seismic fragility functions of a steel frame structure

Mai et al. (2017)



Validity of lognormal assumption?
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Ø Comparison of fragility models for the NPP steam line

Rohmer et al. (2019)



Validity of lognormal assumption?
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Ø Distribution of structural capacities (from IDA)

Zentner et al. (2017)



Conclusions
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Ø In NPP practice, fragility based on a single IM (typically PGA) is the 
main-stream (and completely sufficient for most buildings / 
components)

Ø Traditionally, separation-of-variables has been used in the NPP 
fragility community, for convenience (and because it is often 
sufficient for most SSC)

Ø For specific SSC (limited margin, non-linear response) alternative 
"numerical" methods have been developed

Ø A single IM is typically not sufficient to predict the value of the 
relevant demand parameter of a structure or component (e.g. base 
shear, bolt stress, ...)

Ø Vector-valued fragility take into account more than one IM and can 
help to reduce the variability

Ø In order to be beneficial for NPP practice, i.e. applicable to seismic 
design and seismic risk analysis, it is necessary that the results 
from PSHA are also presented / post-processed in vector-valued 
form



Discussion
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Any questions?
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