
NARSIS
New Approach to Reactor Safety ImprovementS

Modelling External Hazards: example of 
application of the French directive for Basic 

Nuclear Installations (BNI)

Vito Bacchi
IRSN

2nd September 2019

Training on Probabilistic and Safety Assessment for Nuclear 
Facilities, Warsaw, September 2-5, 2019



Outlines

Ø Context

Ø Quantification of the Extreme Sea Levels in the 
French Guide (ASN Guide n°13)

Ø Focus on storm surges evaluation: the problem of 
outliers

Ø Conclusions & Perspectives

Warsaw, 2nd September 2019 |Training on Probablistic and Safety Assessment for Nuclear 
Facilities

Page 2



Nuclear Facilities in France
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Ø Whole cycle
Ø 4  major operators
Ø 1 manufacturer
Ø Standardized fleet of 58 (+1) PWR
Ø 75% of the French electricity production



French Nuclear Actors
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¢ Operators ensure the prime responsibility of the safety of their nuclear facilities. Operators receive
authorization to continue the operation for 10 years at the end of which a thorough safety review has to
be performed. EDF (single NPP operator), Areva/Framatome (fuel cycle installations), CEA (research
organisation)…

¢ Local Information Committees (CLI) and the High Committee for Nuclear Transparency (HCTISN):
communication to public.

¢ Public authorities (Ministries, ASN, ASND) define nuclear safety, security and radiation
protection policies.

Designers and constructors

Civil society

Stakeholders 
(CLIs)

Public nuclear 
expert

Operators

Public 
Authorities

Public 
Nuclear 
Expert

Public Nuclear 
Expert

The Public Expert 
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independent high-
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capacity. It works for 
benefit of 3 others



Flooding Hazard

Ø Various flooding sources 
(oceans, rivers, estuaries,…)
q 19 nuclear power plant

• 14 river sites
• 4 coastal sites
• 1 estuary site
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The French ASN Guide n°13

Ø Reference Flood Situations (RFS) defined in the flooding guide (ASN, 2013)
q Deterministic approach with statistics of extreme used in several situations
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q The target value frequency « 10-4/year » is generally 
lower than the state of art available with statistics of 
extremes
• Addition of margins / combination of events (dependent, independent 

or partially dependent)
• Penalisation of influencing parameter 



The Extreme Sea Level
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Probabilistic objective: 10-4 / year, with uncertainties

RFS Basis Hazard Increase / combination of events

PLU: Local rainfall 100-yr rainfall events (taking the Upper Bound – UB 
– of the 95% Confidence Interval – CI)

Surface water runoff situation + local stormwater 
drainage system completely blocked

CPB: Small watershled
flooding

10,000 yrs instantaneous peak flow flood
OR (10 < watershed < 100 km² only)

100-yr rainfalls event (UB of the 95% CI) + multiplying the resulting flow by a factor of 2

CGB: Large watershed 
flooding

1,000-yr flood (UB of the 70% CI) + influencing parameter + 15%

DDOCE:  Malfunctioning of 
structures, circuits or 

equipment

Deterministic simple failure or multiple common failures according to the scenario (earthquake…)

INT: Mechanically induced 
wave

Deterministic approach according to the 
initiator event

+ worst-case water level scenario 

RNP: High groundwater 
level

Rise effect caused by an initiating event Initial level: 10-yr flood

Or

100-yr Groundwater level (UB of the 95% CI) Penalising hydrogeological hypotheses

ROR: Failure of a water-
retaining structure

Deterministic failure of the dam +15 % + influencing parameter

CLA: Local wind waves 100-yr chop (UB of the 70% CI) Propagated over the 1,000-yr flood (UB of the 70% CI)

NMA: Sea level maximum level of the theoretical tide
+ expectable climatic evolution

1,000-yr storm 
surge

(UB of the 70% CI)

+ 1 meter (to take account 
the “outliers”)

Or statistic model for 
“outliers” (extreme event)

VAG: Ocean waves 100 yrs wave swell (UB of the 70% CI) Propagated over the reference sea level (NMA)

SEI: Seiche Height of annual seiche Propagated over the reference sea level (NMA)

Probabilistic objective: 10-4 / year, with uncertainties

RFS Basis Hazard Increase / combination of events

PLU: Local rainfall 100-yr rainfall events (taking the Upper Bound – UB 
– of the 95% Confidence Interval – CI)

Surface water runoff situation + local stormwater 
drainage system completely blocked

CPB: Small watershled
flooding

10,000 yrs instantaneous peak flow flood
OR (10 < watershed < 100 km² only)

100-yr rainfalls event (UB of the 95% CI) + multiplying the resulting flow by a factor of 2

CGB: Large watershed 
flooding

1,000-yr flood (UB of the 70% CI) + influencing parameter + 15%

DDOCE:  Malfunctioning of 
structures, circuits or 

equipment

Deterministic simple failure or multiple common failures according to the scenario (earthquake…)

INT: Mechanically induced 
wave

Deterministic approach according to the 
initiator event

+ worst-case water level scenario 

RNP: High groundwater 
level

Rise effect caused by an initiating event Initial level: 10-yr flood

Or

100-yr Groundwater level (UB of the 95% CI) Penalising hydrogeological hypotheses

ROR: Failure of a water-
retaining structure

Deterministic failure of the dam +15 % + influencing parameter

CLA: Local wind waves 100-yr chop (UB of the 70% CI) Propagated over the 1,000-yr flood (UB of the 70% CI)

NMA: Sea level maximum level of the theoretical tide
+ expectable climatic evolution

1,000-yr storm 
surge

(UB of the 70% CI)

+ 1 meter (to take account 
the “outliers”)

Or statistic model for 
“outliers” (extreme event)

VAG: Ocean waves 100 yrs wave swell (UB of the 70% CI) Propagated over the reference sea level (NMA)

SEI: Seiche Height of annual seiche Propagated over the reference sea level (NMA)

Ø Extreme Sea Level “NMA” (ASN, 2013)
Ø Agreed sum of:

q The maximum level of the theoretical tide,
q The change in mean sea level extrapolated until the next safety review,
q The 1000 year return period storm surge (upper bound of the 70% confidence 

interval)
• + 1 m to take account of the “outliers”
• Or statistic model for “outliers” (extreme event)

Ø Focus on storm surge evaluation: the problem of outliers !!!



The Extreme Sea Level
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Ø Methodologies for storm surge quantification
q The storm surge is defined as the difference between the observed water level and the 

predicted water level at high tide
q The value can be assed through classical local Frequency Analysis (FA) 
q Alternatively, Regional Frequency Analysis “RFA” can be used (for instance)
q Historical information “HI” can improve results from both methods

Set-up due to 
meteo

Predict level
(tide) 

Observed level

Storm surge



The Extreme Sea Level
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Ø Methodologies for storm surge quantification: local FA
q Raw data & Hypothesis testing (stationary, independent & homogenous)
q Frequency model selection, empirical probability computation, distribution selection & 

fitting
q Adequacy criteria & tests, uncertainty estimation (confidence interval)
q Extrapolation (1000-yr return level for example)
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Ø Storm surges quantification with local FA: the impact of “outliers”
q Results with classical local FA do not permit to have a good fit of outlier,
q Short data set,
q Gaps in time series.

Ø Several observations of exceptional surges along the Northern and Western 
French coasts : Feb 1953, dec 1979, oct 1987, dec 1999, feb 2010 … 

Ø According to the guide on flooding (ASN, 2013), an option to deal with 
outliers is to increase the extrapolated 1000-yr storm surge by 1m

Quantile
CI 70%
Sample

Xynthia 2010

Return period (years)Years

The Extreme Sea Level

POT frequency model (GPD)
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Quantile
CI 70%
Sample

Xynthia 2010

Return period (years)Years

The Extreme Sea Level

Ø Storm surges quantification with local FA: the impact of “outliers”
Ø How to address more properly the FA?

q How to deal with gaps and how to enlarge the sample?
q How to increase the representativeness of the outlier in this sample?

Ø Additional information (more extremes):
q Spatial information (Regional Frequency Analysis – RFA)
q Temporal information (Historical Information – HI)

POT frequency model (GPD)
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The Extreme Sea Level

Ø With additional exceptional events, the outlier will no longer be an outlier !
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Regional data Historical Information 
(archives, sedimentology, … )

Exact values ( x )

Lower bounds (   ), 

Range (   ) 

Threshold of perception (        )

Homogenous regions;

One regional dist. for all sites;

Go back to local estimates
with local index.



The Extreme Sea Level
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Ø Storm surges quantification: example of an application IRSN at La Rochelle 
(France)
q The whole region: 35 harbors on the French (Atl & Eng. Channel) & British coasts
q Whole region relatively poorly gauged, except fro sites 11 & 22: Brest in France and 

Newlyn in UK

Target site: La Rochelle



The Extreme Sea Level

Ø Storm surges quantification: RFA and HI

Warsaw, 2nd September 2019 |Training on Probablistic and Safety Assessment for Nuclear 
Facilities

Page 14

Regional info. Historical Info.

Homogeneous region centered on 
the target site obtained with the 
empirical spatial extremogram 

(Hamdi et al., 2018)

“… historical information is particularly
valuable in a local context.” (Hosking and
Wallis, 1986,1987; Tasker and Stedinger,
1987, Jin & Stedinger, 1989)

!

A multiple linear regression is used 
to reconstruct local missed data 

using regional info.

Regional info. is used in a 
local frequency analysis



The Extreme Sea Level

Ø Additional information: use of regional info. & historical info. separately
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Quantile
CI 70%
Sample

• Better representativeness of the outlier;
• The fitting remains poor !

Regional 
info.

Historical 
info.

Local frequency 
analysis using 
regional info.

Local 
frequency 

analysis using 
historical 

info.



The Extreme Sea Level

Ø With historical events: with and with no regional data included

Warsaw, 2nd September 2019 |Training on Probablistic and Safety Assessment for Nuclear 
Facilities

Page 16

Xynthia

Quantile
CI 70%
Sample

Return period (years)

Quantile
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Sample
HMax data
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Without 
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“The outlier is no longer an outlier” in the two cases.

Better fitting with regional data included.

Return period (years)



The Extreme Sea Level
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Ø These analysis were performed in the context of nuclear safety on some 
nuclear power plants

Ø Different methodologies were compared (i.e. Bardet et al., 2011; Hamdi et 
al., 2018; Weiss et al., 2014; Frau et al., 2018)

Ø The use of regional analysis and of historical information lead to an increase 
of the reference Sea Level up to 0,75 m at Gravelines: 

q Strong differences according to the methodology employed

q Strong impact of historical data

Ø In general, increasing the available “information” permit to better fit outliers



Conclusions & Perspectives
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Ø Three major challenges for storm surges evaluation
q The huge mismatch between the probability target (10-4/yr) and the length of the available 

records,
q The presence of many gaps in the data set,
q The presence of an outlier in the data set.

Ø The classical local FA method without historical information does not insure 
a good fit of the probability distribution
q Adding +1 m to results from classical FA seems adapted respects to the RFA method

Ø Data from HI and RFA (and their combinations) strongly improve the 
statistical regression

Ø Main challenges:
q Develop, adapt and spread the practice of statistics models dealing  with both historic 

information (sometimes imprecise) and regional information (in particular Bayesian 
approaches) 

q Work on data:
• Collect additional information (historical, regional) and quantify uncertainties
• Consolidate homogenous series (especially when time-varying models are used)



IRSN publications on extreme surges
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