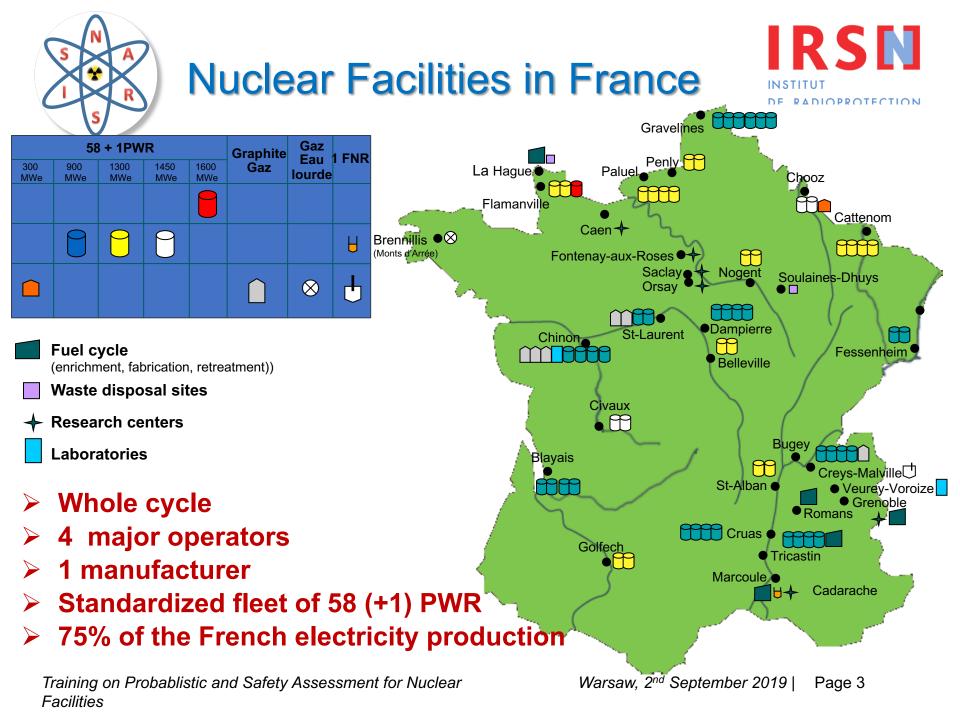


NARSIS

New Approach to Reactor Safety ImprovementS

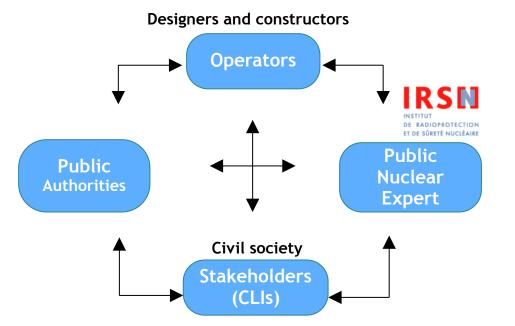
Modelling External Hazards: example of application of the French directive for Basic Nuclear Installations (BNI)

Vito Bacchi IRSN 2nd September 2019

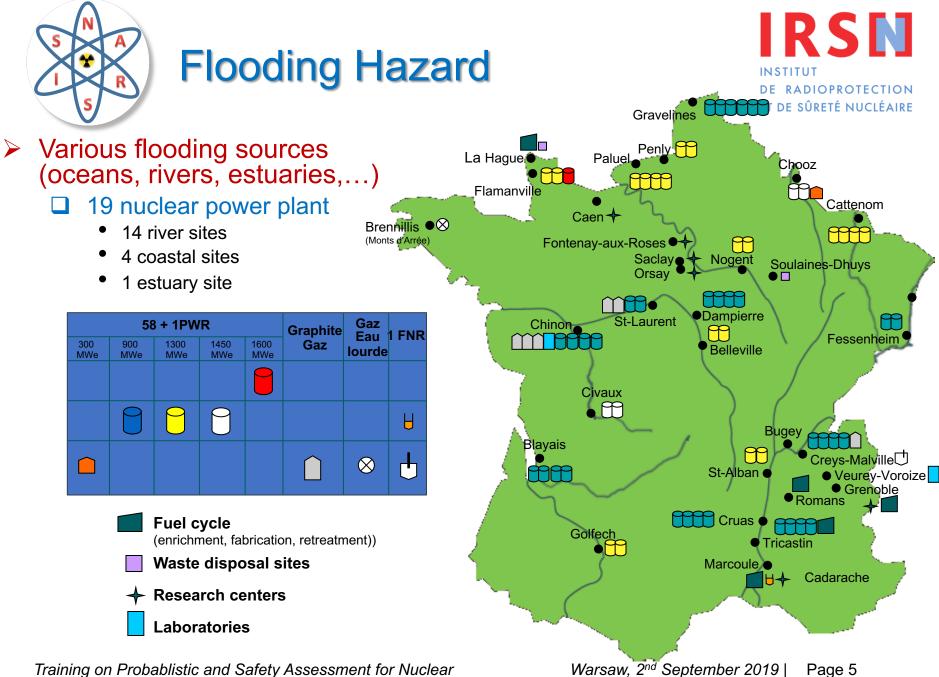

Training on Probabilistic and Safety Assessment for Nuclear Facilities, Warsaw, September 2-5, 2019

Context

- Quantification of the Extreme Sea Levels in the French Guide (ASN Guide n°13)
- Focus on storm surges evaluation: the problem of outliers
- Conclusions & Perspectives



French Nuclear Actors


Operators ensure the prime responsibility of the safety of their nuclear facilities. Operators receive authorization to continue the operation for 10 years at the end of which a thorough safety review has to be performed. EDF (single NPP operator), Areva/Framatome (fuel cycle installations), CEA (research

■ Public authorities (Ministries, ASN, ASND) define nuclear safety, security and radiation protection policies.

The Public Expert conducts research to enhance nuclear safety and provide authorities with an independent highlevel expertise capacity. It works for benefit of 3 others

Local Information Committees (CLI) and the High Committee for Nuclear Transparency (HCTISN): communication to public.

The French ASN Guide n°13

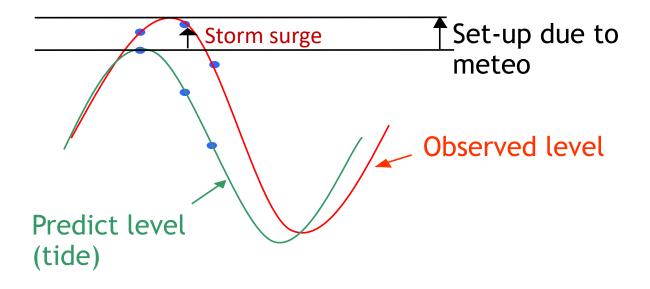
IRSN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Reference Flood Situations (RFS) defined in the flooding guide (ASN, 2013)
 Deterministic approach with statistics of extreme used in several situations

	RFS
	PLU: Local rainfall
	CPB: Small watershled flooding
Protection of Basic Nuclear	CGB: Large watershed flooding
6 Installation	DDOCE: Malfunctioning of structures, circuits or equipment
	INT: Mechanically induced wave
	RNP: High groundwater level
The target value frequency « 10-4/year » is generally lower than the state of art available with statistics of	ROR: Failure of a water- retaining structure
extremes	CLA: Local wind waves
 Addition of margins / combination of events (dependent, independent or partially dependent) 	NMA: Sea level
 Penalisation of influencing parameter 	
Training on Probablistic and Safety Assessment for Nuclear Warsaw, 2 nd Septemb	VAG: Ocean waves
Facilities	SEI: Seiche

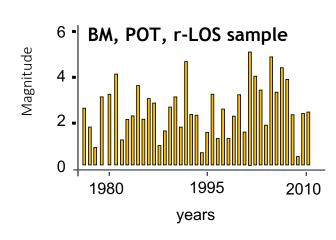
- Extreme Sea Level "NMA" (ASN, 2013)
- Agreed sum of:
 - The maximum level of the theoretical tide,
 - The change in mean sea level extrapolated until the next safety review,
 - The 1000 year return period storm surge (upper bound of the 70% confidence interval)
 - + 1 m to take account of the "outliers"
 - Or statistic model for "outliers" (extreme event)

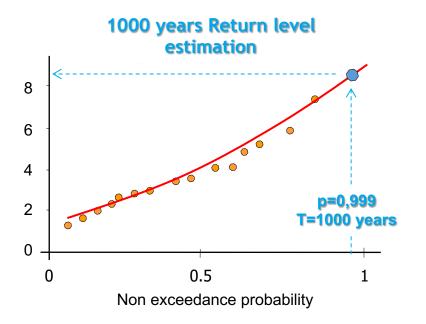
	Probabilistic objective: 10⁻⁴ / year, with uncertainties		
RFS	Basis Hazard	Increase / combination of events	
NMA: Sea level	maximum level of the theoretical tide + expectable climatic evolution	1,000-yr storm surge (UB of the 70% CI)	+ 1 meter (to take account the "outliers")
			<i>Or</i> statistic model for "outliers" (extreme event)


Focus on storm surge evaluation: the problem of outliers !!!

Methodologies for storm surge quantification

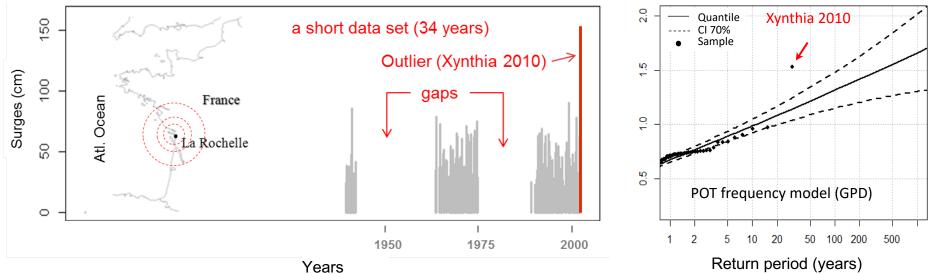
- The storm surge is defined as the difference between the observed water level and the predicted water level at high tide
- □ The value can be assed through classical *local* Frequency Analysis (FA)
- □ Alternatively, Regional Frequency Analysis "RFA" can be used (for instance)
- □ Historical information "HI" can improve results from both methods



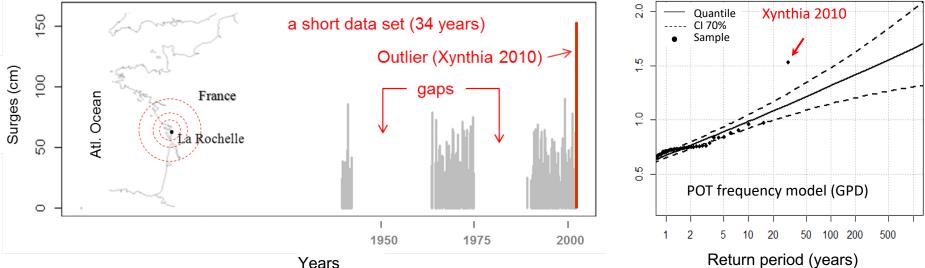


Methodologies for storm surge quantification: local FA

- Raw data & Hypothesis testing (stationary, independent & homogenous)
- □ Frequency model selection, empirical probability computation, distribution selection & fitting
- □ Adequacy criteria & tests, uncertainty estimation (confidence interval)
- Extrapolation (1000-yr return level for example)

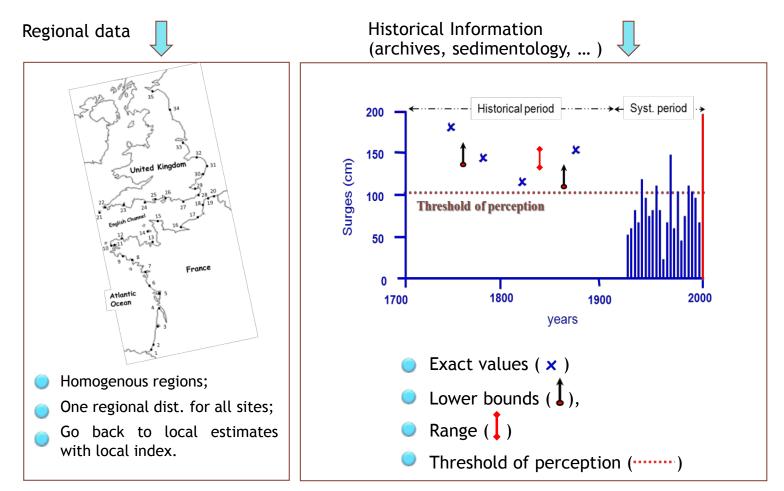


- Storm surges quantification with local FA: the impact of "outliers"
 - Results with classical local FA do not permit to have a good fit of outlier,
 - Short data set,
 - Gaps in time series.

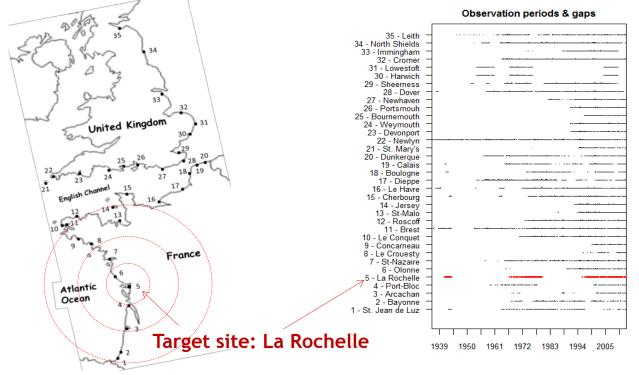


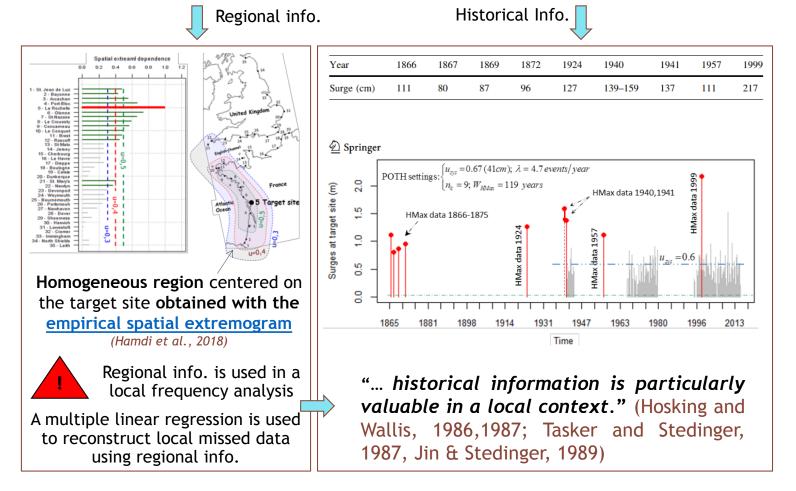
- Several observations of exceptional surges along the Northern and Western French coasts : Feb 1953, dec 1979, oct 1987, dec 1999, feb 2010 ...
- According to the guide on flooding (ASN, 2013), an option to deal with outliers is to increase the extrapolated 1000-yr storm surge by 1m

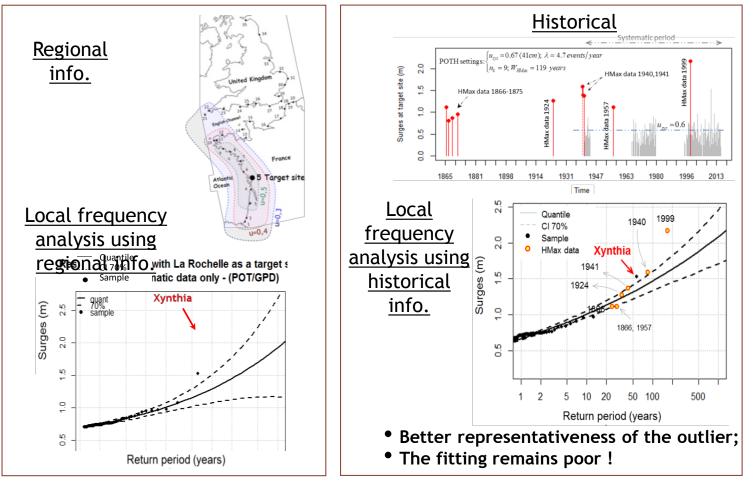
- Storm surges quantification with local FA: the impact of "outliers"
- How to address more properly the FA?
 - □ How to deal with gaps and how to enlarge the sample?
 - □ How to increase the representativeness of the outlier in this sample?

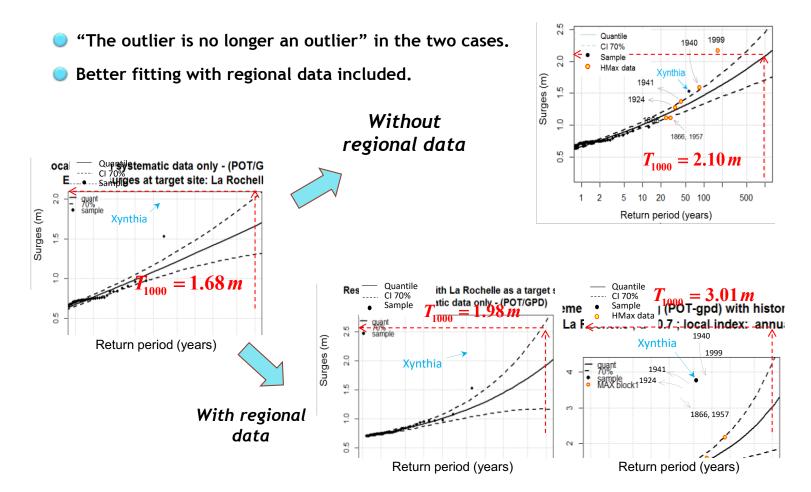


- Additional information (more <u>extremes</u>):
 - □ Spatial information (Regional Frequency Analysis RFA)
 - Temporal information (Historical Information HI)


With additional exceptional events, the outlier will no longer be an outlier !


- Storm surges quantification: example of an application IRSN at La Rochelle (France)
 - □ The whole region: 35 harbors on the French (Atl & Eng. Channel) & British coasts
 - Whole region relatively poorly gauged, except fro sites 11 & 22: Brest in France and Newlyn in UK


Storm surges quantification: RFA and HI


Additional information: use of regional info. & historical info. separately

With historical events: with and with no regional data included

- These analysis were performed in the context of nuclear safety on some nuclear power plants
- Different methodologies were compared (i.e. Bardet et al., 2011; Hamdi et al., 2018; Weiss et al., 2014; Frau et al., 2018)
- The use of regional analysis and of historical information lead to an increase of the reference Sea Level up to 0,75 m at Gravelines:
 - □ Strong differences according to the methodology employed
 - Strong impact of historical data
- In general, increasing the available "information" permit to better fit outliers

Conclusions & Perspectives

- Three major challenges for storm surges evaluation
 - The huge mismatch between the probability target (10-4/yr) and the length of the available records,
 - □ The presence of many gaps in the data set,
 - □ The presence of an outlier in the data set.
- The classical local FA method without historical information does not insure a good fit of the probability distribution
 - Adding +1 m to results from classical FA seems adapted respects to the RFA method
- Data from HI and RFA (and their combinations) strongly improve the statistical regression

Main challenges:

Develop, adapt and spread the practice of statistics models dealing with both historic information (sometimes imprecise) and regional information (in particular Bayesian approaches)

□ Work on data:

- Collect additional information (historical, regional) and quantify uncertainties
- Consolidate homogenous series (especially when time-varying models are used)

IRSN publications on extreme surges

- Bardet, L., Duluc, C.-M., Rebour, V., and L'Her, J. (2011). Regional frequency analysis of extreme storm surges along the French coast, Nat. Hazards Earth Syst. Sci., 11, 1627–1639, <u>https://doi.org/10.5194/nhess-11-1627-2011</u>.
- Bardet, L. and Duluc, C.-M.: Apport et limites d'une analyse statistique régionale pour l'estimation de surcotes extrêmes en France, Congrès de la SHF, Paris, 1–2 février 2012 (in French).
- Giloy, N., Hamdi, Y., Bardet, L., Garnier, E., Duluc C-M (2018).Quantifying historic skew surges: an example for the Dunkirk Area, France. Natural Hazards. <u>https://doi.org/10.1007/s11069-018-3527-1</u>.
- Hamdi, Y., Bardet, L., Duluc, C.-M., and Rebour, V. (2015). Use of historical information in extremesurge frequency estimation: the case of marine flooding on the La Rochelle site in France. Nat. Hazards Earth Syst. Sci., 15, 1515–1531, <u>https://doi.org/10.5194/nhess-15-1515-2015</u>.
- Hamdi Y, Duluc C-M, Bardet L, Rebour V (2016) Use of the spatial extremogram to form a homogeneous region centered on a target site for the regional frequency analysis of extreme storm surges. J Saf Secur Eng 6(4):777–781. <u>https://doi.org/10.2495/SAFE-V6-N4-777-781</u>.
- Hamdi Y, Garnier, E, Giloy, N., Duluc C-M, Rebour V (2018a) Analysis of the risk associated with coastal flooding hazards: a new historical extreme storm surges dataset for Dunkirk, France. Nat. Hazards Earth Syst. Sci., 18, 3383–3402, 2018. <u>https://doi.org/10.5194/nhess-18-3383-2018</u>.
- Hamdi Y, Duluc C-M, Bardet L, Rebour V (2018b) Development of a target-site-based regional frequency model using historical information. Nat Hazards. <u>https://doi.org/10.1007/s11069-018-3237-</u><u>8</u>.