D

IR\

S8 NARSIS Workshop &

Training on Probabilistic Safety Assessment for Nuclear Facilities
September 2-5, 2019, Warsaw, Poland

Modelling External Hazards: Extreme Value
Modelling

Hugo Winter
EDF Energy UK R&D Centre

2nd September 2019

1/30



q

5 Outline 3
3 eDF

ENERGY

Introduction and aims

Extreme value analysis
Block maxima
Threshold exceedances
Estimation

Example application

Conclusion
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. Provide an introduction to extreme value analysis.

. Understand how these statistical approaches can be
applied to data for external hazards.

. To outline some common pitfalls when undertaking an
extreme value analysis.

. To provide you with a set of packages and functions that
can be used to undertake and extreme value analysis.
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Motivation: modelling external hazards 3
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Safety analysis for assessing the robustness of a nuclear
power plant to external hazards is necessary for design
and safe operation.

We need to ensure we are protected for hazard levels that
are more extreme than those observed in the data -
especially given likely future climate changes.

Need a method that is generalisable to several different
external hazards to ensure consistency.

For atmospheric and marine hazards a commonly used
approach is extreme value analysis.



‘!%.v What is extreme value analysis? s
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> A statistical approach for analysing extreme data values of ™"

a variable of interest.

> First mentioned in 1928 by Fisher and Tippett.

> Formalised into statistical methods by Gumbel in paper in
1958.

> Use for environmental problems introduced in the 1950’s.

Left: Roland Fisher; Centre: Leonard Tippett; nght Emil
Gumbel
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Why use extreme value analysis?

Provides a mathematically rigorous framework for
modelling extreme values.

Data are by definition sparse.

Empirical approaches based upon the observed data an
only provide accurate results within the range of the
observed data — we often wish to extrapolate to higher
levels.

Different statistical models can lead to different tail
behaviours — can often be too light-tailed and
underestimate the probability of extreme events.

Many statistical models are driven by average values as
opposed to extreme values.
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v%v When to use EVA? I~

> When the variable of interest is stochastic (as opposed to
deterministic) — e.g. storm surge v/, tide X.

> When physical models are unavailable or unrealistic.

> When interested in obtaining estimates for extreme
quantities that lie outside the range of the observed data.

> When there are at least 20-30 years of observations.
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Modelling univariate extreme values oty
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Two main approaches exist for modelling univariate
(one-dimensional) extreme values:

> Block maxima
> Threshold exceedances

Block maxima methods were first to be developed.

Threshold exceedance methods are most commonly used
now.

Modelling strategies for both assume observations are
independent and identically distributed (lID).



Daily rainfall accumulations (mm) in the vicinity of

Mulheim-Karlich nuclear power plant.
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We shall focus on data from the weather gauge at the
Andernach weather gauge.
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B Block maxima o3
9 > Model the maxima of time periods of a certain length. €eDF

> Annual maxima often taken to remove the effect of
seasonality.
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Let My, ..., M, be random variables for the cluster maxima from
n time blocks. The generalized extreme value (GEV)
distribution can be used to model these maxima such that

G(x) = P(M < x) :exp{— [1 n: (:“)HE},

for1 4+ &(x — p/o) > 0 where

> 1 € (—o0,00) is the location parameter
> o € [0,00) is the scale parameter
> £ € (—o0,) is the shape parameter
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> The shape parameter ¢ is a very important parameter in
EVA.

> Controls the heaviness of the tail = directly affects the
extremes.

> The shape parameter of the GEV covers three different
types of tail behaviour:

» & > 0 - Fréchet distribution — Heavy upper tail
> ¢ < 0 - Negative Weibull distribution — Bounded upper tail
> ¢ =0 - Gumbel distribution — Exponential upper tail
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> We are most interested in estimating the severity of
extreme events.

> One way to summarise this is in terms of the T-year
return level z7.

> This is the event that happens once in every T years (i.e.
has annual exceedance probability 1/T).

For the GEV distribution fitted to annual maxima

ZT_{u—z[1—{—|og(1—1/r)}-£ it €40
p—olog{—log(1—1/T)} if ¢=0.
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> Model exceedances above a fixed high threshold.

> More efficient as more data are available but not
necessarily independent.
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Let Xj,..., X, be a sequence of random variables. The

distribution G of the exceedances above a high threshold v is a
generalized Pareto distribution (Davison & Smith 1990) of the

form

X — u)‘”f

7]

G(x):P(X§x|X>u):1—<1+£

9

+
for x > u where

> oy € [0,00) is the scale parameter
> ¢ € (—o0,) is the shape parameter
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Choosing the threshold s
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A bias variance trade-off exists when choosing the
threshold.

We wish to set the threshold low to use as many data
points as possible in our analysis.

Need the threshold set high enough for underlying limit
assumptions of EV model to hold.

Threshold too high = not enough data, high uncertainty.

Threshold too low = non extreme data modelled, model
not suitable.
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o Choosing the threshold S
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> Two standard diagnostics exist for threshold choice:

> Mean residual life (MRL) plot.
> Parameter stability plots.

MRL plot Parameter stability plots

ananananananan

ananananananan

> Other approaches exists (e.g. Northrop et al. (2016))
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> Calculated in a similar way as for the GEV distribution.

> Since data are conditional upon having exceeded a high
threshold we need to undo this conditioning by multiplying
by \y = P(X > u).

> The m-observation return level is given below

L Jutouglma)—1] it g#0
T u+ oy log (MAY) it ¢=0,

where m must be sufficiently large to ensure that x,, > u. If ny
is defined as the number of observations in a year then
T =m/nr.
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Declustering

When fitting an extreme value distribution to data an
important assumption made is that data are independent
and identically distributed (1ID).

When using block maxima (for a sufficient block length)
this is satisfied.

This could be an issue for threshold exceedances tend to
occur in clusters.

If we model using all the exceedances it is likely that we
will be overconfident and our confidence intervals will be
too narrow.

To solve this we usually undertake declustering to extract
the peaks over the threshold (POTSs).
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> Many different approaches exist for fitting both types of
extreme value model:
> Maximum likelihood — most commonly used.
> L-moments — faster in certain situations.
» Bayesian methods — modern approach, more
computationally expensive.

> Many packages exist in R to fit extreme value models:
> evd - Basic functions for an EVA
> extRemes - Slightly more advanced set of functions
> ismev - Companion package to Coles (2001)
> POT - Peaks over threshold modelling
> evir - More basic functions for an EVA
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Confidence intervals 3
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> Confidence intervals can be obtained in several ways:
> Delta method
> Profile likelihood
> Bootstrapping (parametric and non-parametric)

> When looking at extreme quantities these intervals can get
quite wide - this motivates methods for pooling data to
obtain narrower intervals.

> Often profile likelihood or bootstrap intervals are preferred.
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Hodel underestimales

Model overestimates

20 40 g0 B0
Model quantiles

| Scale (0u) | Shape (€)

Best estimate
Standard error

7.44 0.12
0.63 0.06
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Multi-site analysis
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| hope that this course has given a basic overview of EVA.

This area of statistics is seen as a vital skill across industry
to estimate the risks posed by natural hazards.

The go-to introductory book is still Coles (2001).

Many packages are now out there (especially within R) to
do this type of analysis.

The application of such analysis is not straightforward due
to modelling assumptions required - any questions then
please ask me!
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