NARSIS Workshop

**** * * ***

aining on Probabilistic Safety Assessment for Nuclear Facilit September 2-5, 2019, Warsaw, Poland

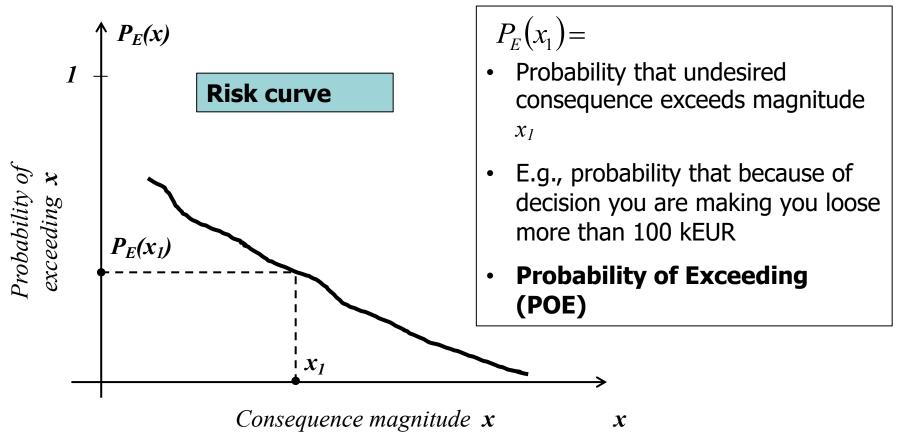
PSA: Main Elements and Role in the Process of Safety Assessment and Verification

Ivan Vrbanic, APOSS, Croatia

- Risk curve
- Definition of risk in engineer's terms
- Risk control (risk management)
- Risk modeling probabilistic safety (risk) assessment (PSA)
- Main technical elements of PSA
- A word on combined use of deterministic safety analyses and PSA in design safety verification

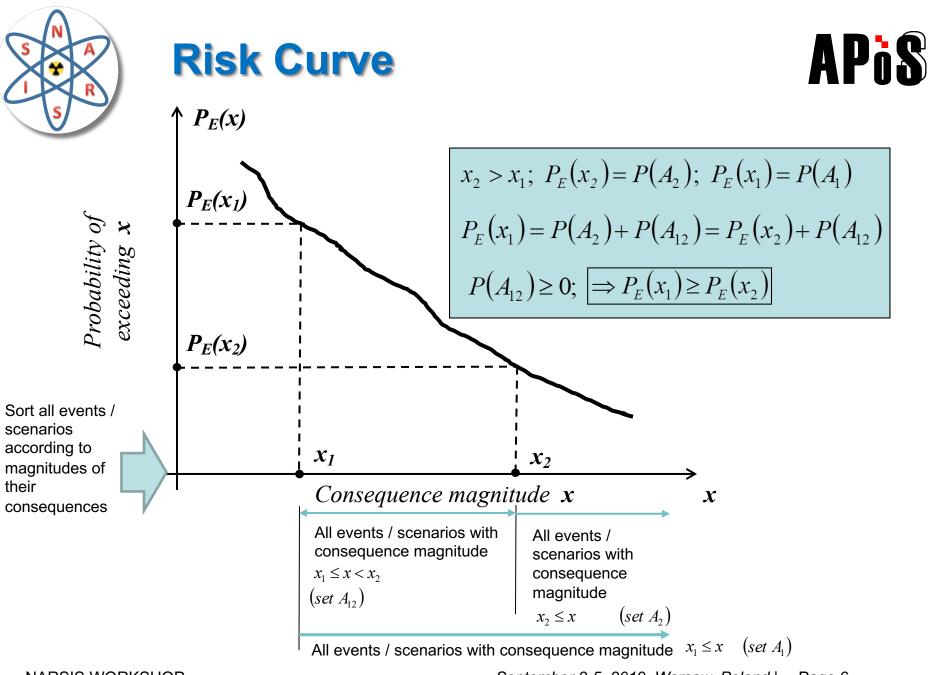
Introduction

- Exposure to a <u>possibility</u> of undesired <u>consequences</u> represents **risk**
- To possible undesired consequences you can be exposed:
 - <u>Once</u> / in a <u>single</u> specific occasion (e.g. single specific and important decision to be made)
 - Periodically or occasionally (e.g. decisions or actions of repetitive nature);
 - <u>Continuously</u> (e.g. natural hazards such as earhquake).
- For different people, risk means different things
 - Definition, i.e. formulation of term "risk" for an **engineer**.

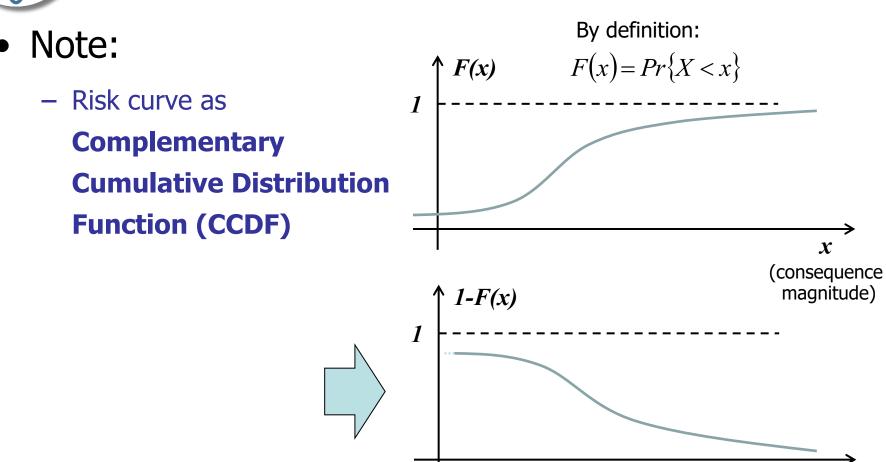

NARSIS WORKSHOP

Risk Curve

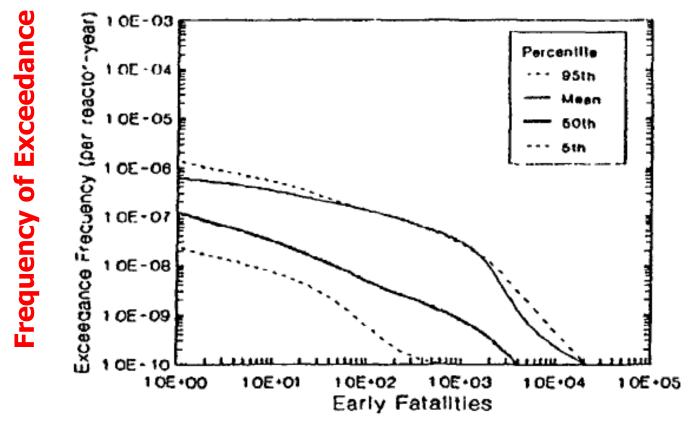
• Mathematical formulation of (single exposure)


September 2-5, 2019, Warsaw, Poland | Page 4

- Important to notice: risk curve is, mathematically, a **decreasing** curve
 - Larger consequences \rightarrow smaller probabilities
 - (next page)



x (consequence magnitude)



• Example (CCDF) from NUREG-1150

Magnitude of Consequence

Risk Definition

Probability of occurrence (POO) of event

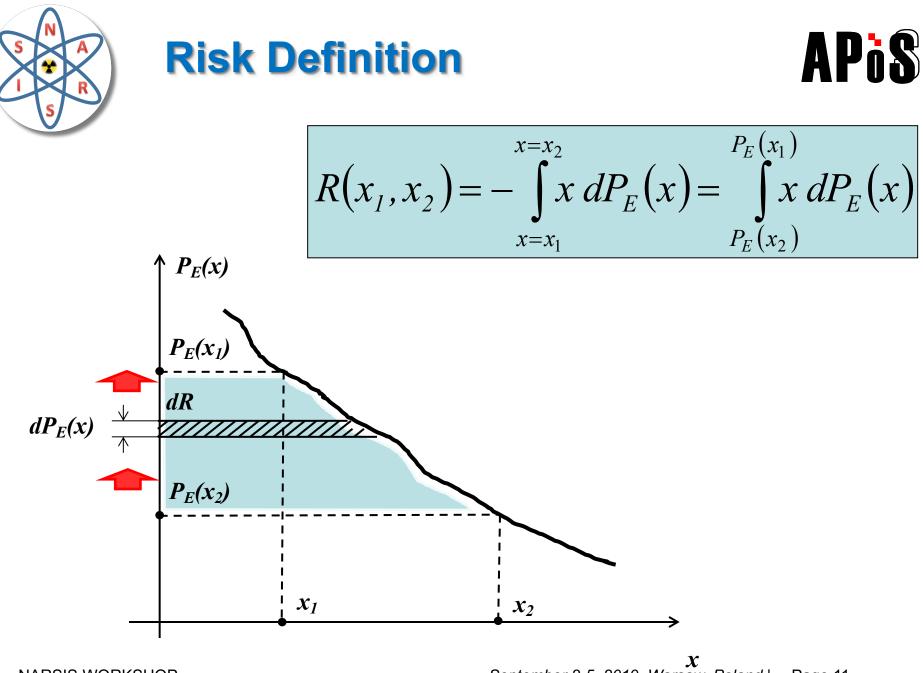
with consequence magnitude between x_1 and x_2 :

$$P_O(x_1, x_2) = P_E(x_1) - P_E(x_2); \quad x_2 > x_1$$

- Infinitesimal case:

$$P_O(x, x+dx) = -dP_E(x)$$

Risk Definition

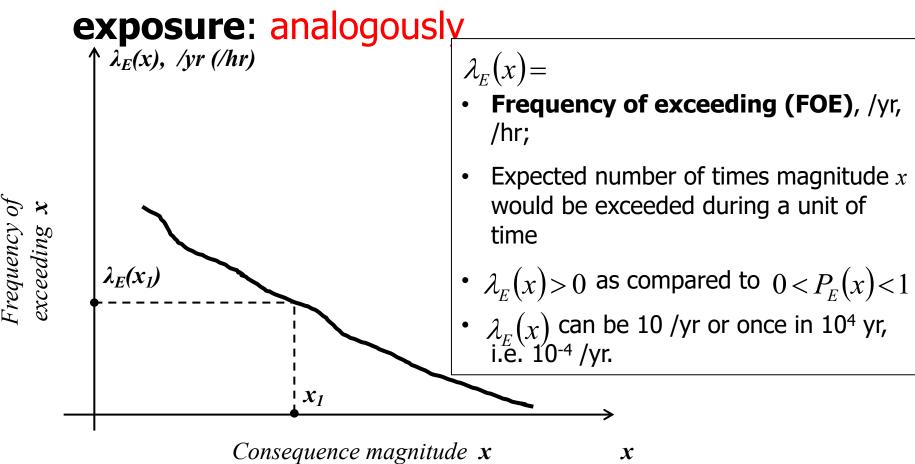

- For technical engineering, **definition of risk** is derived from the general principle:
 - Risk increases with probability of harmful events and magnitude of undesired consequences
- Thus, risk from event with consequence *x*:

$$dR(x) = P_O(x, x + dx) x = -dP_E(x) x$$

• And risk from event with consequence between

$$x_1$$
 and x_2 :

$$R(x_1, x_2) = -\int_{x=x_1}^{x=x_2} x \, dP_E(x)$$


NARSIS WORKSHOP

September 2-5, 2019, Warsaw, Poland | Page 11

Risk at Continuous Exposure APiS

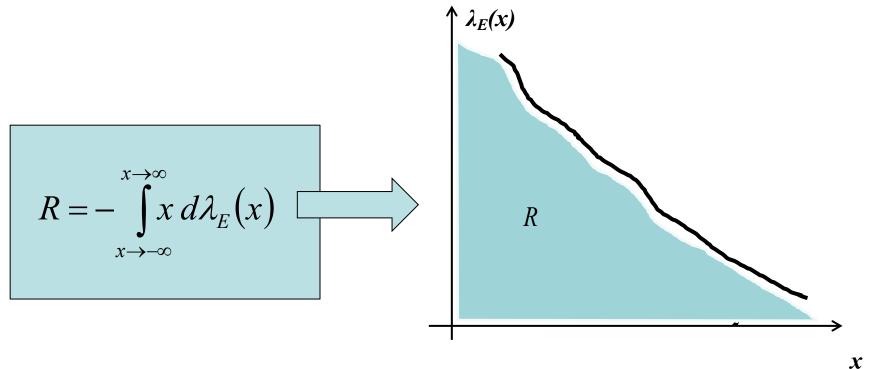
• Mathematical formulation of risk at **continuous**

NARSIS WORKSHOP

September 2-5, 2019, Warsaw, Poland | Page 12

Risk at Continuous Exposure APiS

- Like with $P_E(x)$, curve inevitably decreases:
 - If $x_2 > x_1$, then $\lambda_E(x_2) \le \lambda_E(x_1)$
 - Specifically:


$$\lambda_E(x_1) = \lambda_O(x_1, x_2) + \lambda_E(x_2)$$

- Where $\lambda_O(x_1, x_2)$ **frequency of occurrence** of events / scenarios with consequence magnitude between x_1 and x_2

Risk at Continuous Exposure APiS

- Risk definition is analogous.
- Total risk:

Risk – Engineer's Definition APiS

- Simplification of "risk" definition for <u>practical</u> engineering <u>applications</u>:
 - Risk from a class of events (scenarios)
 - Assume there is a class of events producing **approximately same** consequence, or such events for which the consequence
 can be **averaged** or **represented**

$$R(x_1, x_2) = \left| \int_{x=x_1}^{x=x_2} \overline{x} \, d\lambda_E(x) \right| = \overline{x} \left| \int_{x=x_1}^{x=x_2} d\lambda_E(x) \right| = \lambda_{tot} \overline{x}$$

Risk – Engineer's Definition

• Simplified, for practical purposes, definition:

```
Risk = ProbabilityxConsequenceRisk = FrequencyxConsequence
```

- Usually provided in literature on practical engineering applications
- Applies to **classes of events**
 - Typically, used for risk management in the form of some kind of risk matrix (which represents simplified risk curve)

Example: Consideration of Risk in NPP Safety Applications

• Risk Curve:

- Usually, simplified by means of predefined classes of consequences or conditions
- Examples of most frequently used:
 - Reactor core damage;
 - Large release;
 - Large early release;

• However, others also in use, e.g.:

- Entering BDB condition;
- Boiling of coolant in reactor / cavity during shutdown modes;
- Spent fuel pool (SFP) boiling;
- Fuel uncovering in SFP

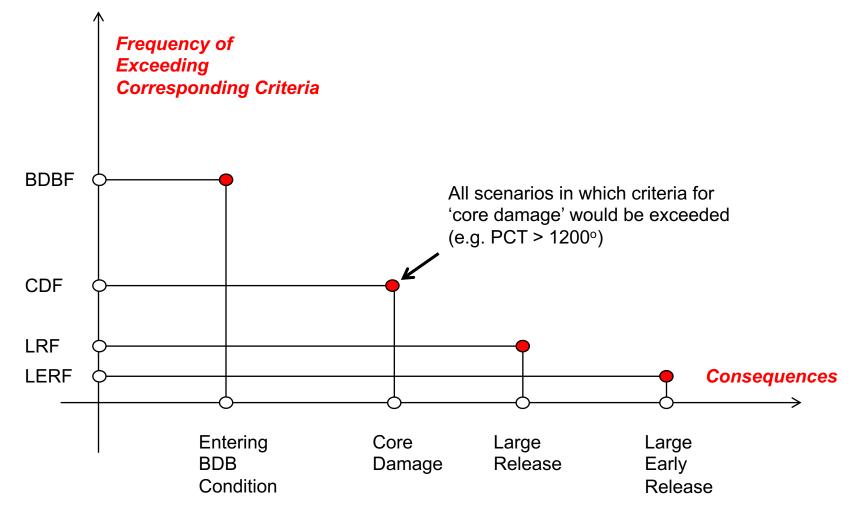
- ...

Example: Consideration of Risk in NPP Safety Applications

- Frequencies or probabilities of predefined consequence classes
 - Quantitative risk metrics
- Examples of most frequently used:
 - Core Damage Frequency (CDF);
 - Large Release Frequency (LRF);
 - Large Early Release Frequency (LERF);
- Examples of others, also in use:
 - Frequency of entering BDB condition;
 - RC boiling frequency (shutdown modes);
 - SFP boiling frequency;
 - SFP fuel uncovering frequency

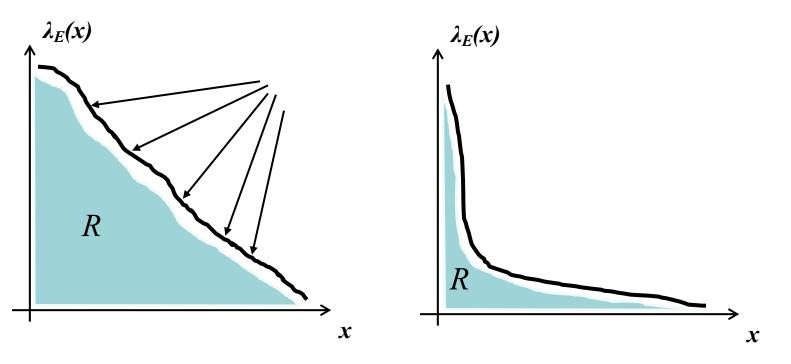
- ...

Example: Consideration of Risk in NPP Safety Applications



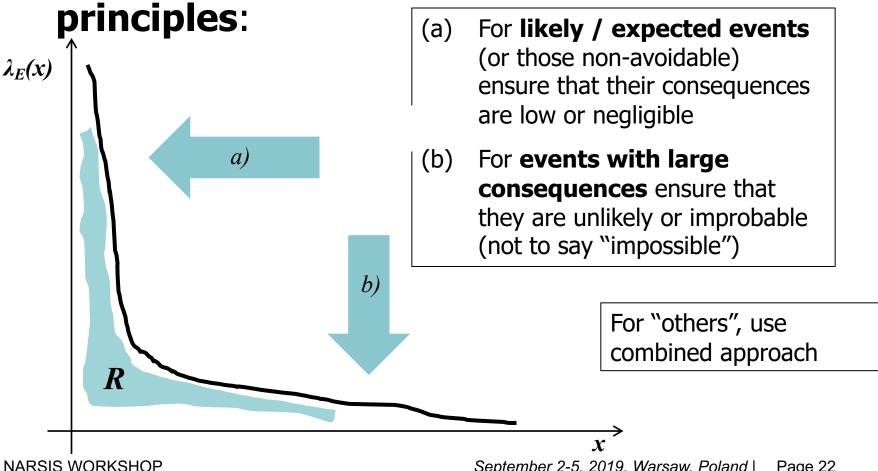
- Consider:
 - 'Entering BDB Condition' as a consequence
 - Effectively lower than 'core damage' as consequence, because:
 - Only some of 'BDB condition' scenarios would result with 'core damage'
 - » Example: PWR Rx trip with loss of all MFW and EFW
 - » Initiate Primary Feed and Bleed
 - Hence: BDB Frequency bounds CDF (**BDBF > CDF**)
 - 'Core Damage' as a consequence
 - Effectively lower than 'large release' as consequence, because:
 - Only some of 'core damage' scenarios would lead to 'large release'
 - Hence: CDF bounds LRF (CDF > LRF)
 - `Large Release' as a consequence
 - Effectively lower than 'large early release' consequence, because:
 - Only some of 'large release' scenarios would be 'large early release'
 - Hence: LRF bounds LERF (LRF > LERF)

Consideration of Risk in NPP Safety Applications



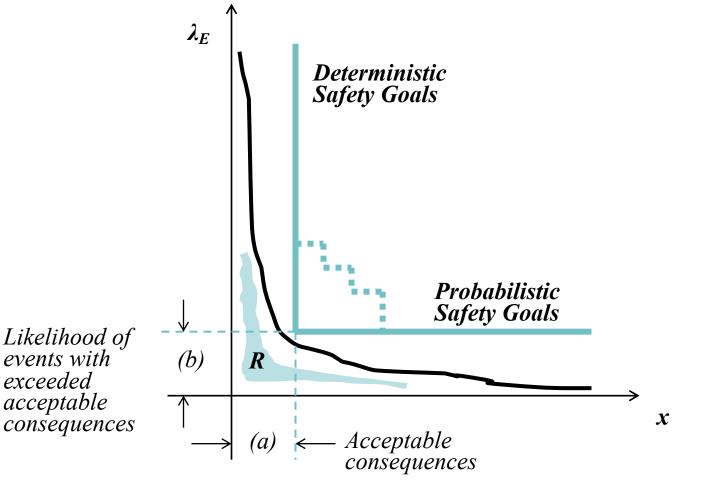
Risk Control (Risk Management) APjS

- Control over risk (risk management):
 - To conduct processes and projects, make decisions and expose to conditions in a manner that *R* is as small as possible


NARSIS WORKSHOP

Risk Control

Risk control (management) based on two main



- Two types of acceptance criteria (goals, targets)

Risk Model

• Risk from a consequence of class *x*:

Logical model **Quantitative model** $R = H V C_r$ $R = \lambda_{OH} Q x$ Hazard frequency; Hazard; λ_{OH} HVulnerability of system; Probability of inducing VQ damage which leads to Consequence of class *x* C_x consequence C_x ; X

Measure of consequence C_x (e.g. financial loss)

Risk Model

• For risk to "materialise":

- 1. There must be a hazard, **and**
- 2. System / process must be vulnerable to a hazard, **and**
- 3. Vulnerability must produce undesired consequences.

• These are three elements of risk.

In order to remove risk, it is "sufficient" to remove any of them.

• There is no risk if:

- 1. There is no hazard, or
- 2. System is not vulnerable, or
- 3. No consequences can be produced.

Risk Model for Substituted Consequence (PSA)

- With specifically defined representative or substitute for consequence
 - E.g. 'core damage' or 'large early release'
- Risk equation

Risk = Frequency \mathbf{x} Consequence

• Reduces, even further, to

Risk = Frequency (of relevant scenarios)

• Which **scenarios**?

- Those leading to specified consequence
- (Those where corresponding criteria would be exceeded).

Risk Model for Substituted Consequence (PSA)

- 'Risk model'
 - Logical and quantitative model for <u>occurrence of any</u> <u>scenario</u> which can lead to specified consequence
 - NPPs: PSA Level 1: Risk model for `core damage'
 - NPPs: PSA Level 2: Risk model for 'radioactivity release' (including 'large early release')
- Two elements (factors in equation):
 - Hazard or initiator; and
 - Vulnerability of system (facility) to hazard / initiator
 - Such that it can result in exceeding the criteria and leadin to specified consequence

Risk Model for Substituted Consequence (PSA)

• Risk model (PSA model) has **two main layers**:

Logical model

- R = H V
 - *H* Hazard;
 - V Vulnerability of system

Quantitative model

$$r = \lambda q$$

- λ Hazard frequency;
- *Q* Probability of inducing damage which leads to specified consequence

• Third layer:

Characterization of uncertainty

Analitical Tools (Disciplines) for Risk Modeling in PSA

- First layer: Logical modeling
 - Event trees and fault trees
 - Supporting deterministic analyses
 - Boolean Algebra
- Second layer: Quantification:
 - Probability theory
 - Reliability theory
- Third layer: Characterization of uncertainty
 - Identification of uncertainty
 - Quantification of uncertainty
 - Random variables and distributions

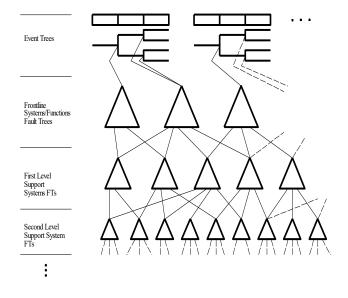
Main Technical Elements of PSA APiS

• Some internationally recognized standards for PSA:

- "Development and Application of Level 1 Probabilistic Safety Assessment for Nuclear Power Plants", Specific Safety Guide No. SSG-3, International Atomic Energy Agency, Vienna, 2010
- "Development and Application of Level 2 Probabilistic Safety Assessment for Nuclear Power Plants", Specific Safety Guide No. SSG-4, International Atomic Energy Agency, Vienna, 2010
- ASME/ANS RA-Sa-2009. 2009, Addenda to ASME/ANS RA-S-2008, "Standard for Level 1/Large Early Release Frequency Probabilistic Risk Assessment for Nuclear Power Plant Applications", An American National Standard, The American Society of Mechanical Engineers, New York, 2009
- ASME/ANS RA-S-1.2-2014, "Severe Accident Progression and Radiological Release (Level 2) PRA Standard for Nuclear Power Plant Applications for Light Water Reactors (LWRs), American Society of Mechanical Engineers - American Nuclear Society, January 2015
- U.S. NRC Regulatory Guide 1.174, "An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-specific Changes to the Licensing Basis", Revision 2, U.S. Nuclear Regulatory Commission, May 2011
- U.S. NRC Regulatory Guide 1.200, An Approach for Determining the Technical Adequacy of Probabilistic Risk Assessment Results for Risk-Informed Activities, Revision 2, U.S. NRC, 2009

Main Technical Elements of PSA APiS

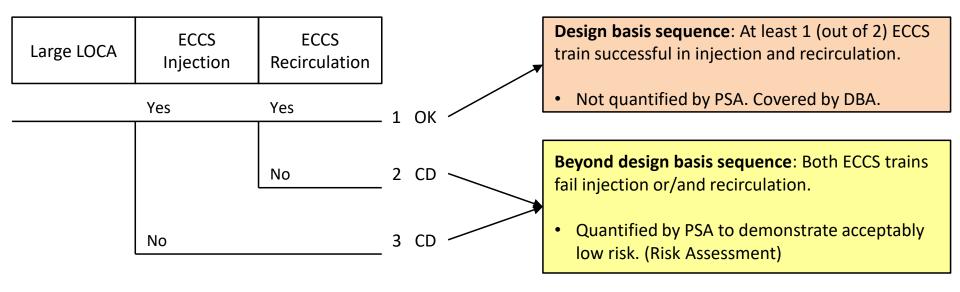
- For internal IEs at power:
 - Initiating Events Analysis;
 - Accident Sequence and Success Criteria Analyses;
 - Systems Analysis;
 - Human Reliability Analysis;
 - Data Analysis;
 - Dependent Failures Analysis;
 - Model Integration and Quantification; and
 - Results Interpretation.
- Additionally, specific technical elements for:
 - Other initiating event categories (e.g. external hazards), other modes of operation (e.g. shutdown modes) and other risk measures (e.g. risk from radioactivity releases).


NARSIS WORKSHOP

Main Technical Elements of PSA APiS

• "PSA model"

- Large logic equation in which a top event (e.g. reactor core damage) is expressed in terms of initiators / hazards, equipment failures and human errors.
- Usually built by means event trees (ET) and fault trees (FT)



- Initiators, failures and errors in PSA model:
 - Represented by "basic events"
 - Top event (e.g. core damage) is, thus, expressed as logic function of "basic events".
- Key term in top event analysis / quantification:
 - "Minimal cutset" (MCS): Minimal combination of basic events leading to the top event
- Top event analysis / quantification usually done in two major steps:
 - <u>Identification of MCSs</u>: Logic function (ETs / FTs) by the rules of Boolean algebra resolved into the form of logic sum of MCSs;
 - List of MCSs generated;
 - <u>Quantification of top event</u>: logic sum of MCSs is used as a basis for calculating the top event probability or frequency (e.g. CDF).
- Quantified list of MCSs: basis for risk profiling and risk-importance evaluation

A Word on Combined Use of DSA and PSA in Safety Design Verification

APis

A Word on Combined Use of DSA and PSA in Safety Design Verification

- DB sequences: "success" sequences in PSA ETs
 - Covered by DB analyses in FSAR, with demonstration of adequate safety margins
 - Not quantified by PSA

• PSA quantifies risk from BDB sequences

- Calculate probability (frequency) of BDB sequences to demonstrate acceptably low risk from getting out of DB envelope
- Remark:
 - Not every BDB sequence is in PSA necessarily "failed" sequence
 - Example: successful feed and bleed sequence

• Thank You for You attention!