

NARSIS Workshop Training on Probabilistic Safety Assessment for Nuclear Facilities International Training Course Warsaw, Poland, September 2-5, 2019

NUCLEAR POWER PLANT ACCIDENTS

Presented by: Alexander Duchac Division of Nuclear Installation Safety Department of Nuclear Safety and Security

Alexander DUCHAC (IAEA)

- Education
 - MSc. in Electrical engineering
 - Post graduate in Nuclear engineering
- Professional experience
 - 1982 1996 Bohunice NPP (Shift Supervisor, Manager of Operation)
 - 1996 1999 Nuclear Safety Authority (Director of Nuclear Safety dpt)
 - 1999 2002 Consultant (DSA, PSA, Design reviews)
 - 2002 2013 European Commission JRC, Petten (Nuclear safety research, European polices on Nuclear safety, European Stress Tests)
 - Since February 2013 with the IAEA, Safety assessment section, Electrical, I&C, HFE, Ageing management, Equipment qualification, Periodic safety reviews
- Liaison with IEC SC45A and a member of IEEE NPEC SC 6

Outline

- Is an accident at nuclear installation(s) a rear event?
 - How many did we have
 - What were the contributing factors
 - What have we learnt
- Main improvements resulted from accidents
- Design requirements evolution earlier and new concept of plant states
- Design features for preventing/mitigating accident conditions
- Conclusions

Why we have to consider accidents in the design of the plant?

- Operating experience show that accidents happen
- We are learning from these accidents in order to:
 - Better understand why these accidents happen
 - Improve (design) safety standards
 - Improve operating procedures
 - Implement accident management strategies (procedures + equipment)
 - Train the plan personnel to cope with the accident scenario in simulated (severe) environmental conditions
 - Be prepared for unexpected

How many severe accidents did we have in nuclear installations or we know about?

- Most common answer is: three (3)
 - TMI
 - Chernobyl
 - Fukushima Daiichi
- Pioneering of nuclear power for energy production resulted in more...
- How many?

19 severe accidents found¹⁾

Reactor/site	Reactor type	Year	INES	Country
NRX	Water and air cooled heavy water moderated research reactor	1952	4	Canada
Experimental Breeder Reactor 1	Liquid metal fast breeder research reactor	1956	3	USA
Windscale Unit 1	Air cooled, graphite moderated isotope production reactor	1957	5	UK
Heat Transfer Reactor Experiment-3	Air cooled solid hydride moderated test reactor	1958	4	USA
Sodium Reactor Experiment	Sodium cooled graphite moderated test reactor	1959	4	USA
Westinghouse Testing Reactor	Low-pressure water cooled and moderated material test reactor	1960	4	USA
SL-1	Small boiling water reactor prototype	1961	4	USA
Fermi Unit 1	Liquid metal fast breeder reactor prototype	1966	4	USA
Chapelcross Unit 2	Gas cooled, graphite moderated reactor (Magnox)	1967	3	UK
Saint Laurent Unit A1	Gas cooled, graphite moderated power reactor	1969	4	France
Lucens	Gas cooled, heavy water moderated power reactor prototype	1969	4	Switzerlan d
105 K-West	Water-cooled graphite moderated	1970	3	USA
KS 150	Gas cooled heavy water moderated prototype power reactor	1977	4	Slovakia
TMI-2	Pressurized water reactor	1979	5	USA
Saint Laurent Unit A2	Gas cooled graphite moderated power reactor	1982	4	France
Chernobyl Unit 4	Light water cooled, graphite moderated, dual use reactor	1986	7	Ukraine
Fukushima Daiichi Units 1,2, & 3	Boiling water reactor	2011	7	Japan

¹⁾ Johnson, G., EPRI Report on Severe Accidents Lessons Learned, No. 3002005385

19 severe accidents found¹⁾

	Estimated INES Level
Chernobyl Unit 4	7
Fukushima Daiichi Units 1,2, & 3	7
Windscale Unit 1	5
TMI-2	5
Heat Transfer Reactor Experiment-3	4
National Research Experimental Pile (NRX)	4
Fermi Unit 1*	4
KS 150 (PHWR)	4
Sodium Reactor Experiment (SRE)*	4
Saint Laurent Unit A2	4
Stationary low power (SL-1)*	4
Westinghouse Testing Reactor	4
Saint Laurent Unit A1	4
Lucens*	4
Experimental Breeder Reactor 1	3
Chapelcross Unit 2	3
105 K-West	3

*Prototype and demonstration plant

<u>Types of Plants</u> 4 LWR 7 Gas cooled, graphite or ²H moderated reactors 2 Isotope production reactors 6 Test or research reactors

- I&C contributed to most events because the operators were not presented with the information that they needed
- Human factors contributed to most events because procedures and training did not prepare them for what occurred

¹⁾ Johnson, G., EPRI Report on Severe Accidents Lessons Learned, No. 3002005385

Severe accidents are "black swans"

Things that were unknown or thought not credible led to **Unexpected** events which Neither plant systems nor operators* could bring under control before

Significant fuel melt occurred

Consider TMI-2 (March 1979)

Pressurizer safety valves failed to close, although they indicated 'closed position' at MCR

led to

Unexpected event sequence

which

Prevented operators for having accurate and timely situation awareness*

before

Significant fuel melt and hydrogen release into the containment occurred

Consider Chernobyl-4 (April 1986)

Inadequate safety analysis, inadequate review of the test procedure, delaying the test by grid dispatcher

led to

Operators to maintain the core criticality at very low power level where the reactor is instable

which

Resulted in conducting the test in the worst possible plant conditions

before

Operators recognized* it was too late to initiate trip to prevent an accident

Consider Fukushima Daiichi (March 2011)

The maximum tsunami at the site was unknown. Tsunamis > 6 m were considered not credible led to

Failure of plant AC and DC power and failure to plan for extended loss of AC & DC which

Deprived operators* the information, systems, procedures and training needed to bring the plant under control before

Significant fuel melt and radiation release occurred

An alternative model

- They were caused by unknown-unknowns
 - For example at Fukushima-Daiichi

See real situation at Fukushima Daiichi in March 2011 in the following slides

Tsunami height observed at 14-15 meter (Courtesy of TEPCO)

0 sec

6 sec

46 sec

Damages caused by the Tsunami (2)

Damages caused by the Tsunami (3)

(Courtesy of TEPCO)

Yet another model

- There are always tradeoffs between safety and economics
- No one, and no organization can ever fully understand the risks and benefits of these tradeoff
- A history of successful operation tends to support a reduction of safety margins
- Eventually something bad happens

We must expect severe accidents

*In Gen 2 reactors, counting Fukushima-Daiichi as a single event

All of the accidents involved bypass of DiD

INSAG-10 Defense in Depth Levels						
Events ordered by date	Level 1	Level 2	Level 3	Level 4	Level 5	
Fukushima Daiichi U3	Inadequate design basis for external hazards Accident management can't deal with Operators provide effects of extreme external hazards cooling of corium					
Fukushima Daiichi U2	Inadequate design basis for external hazards Accident management can't deal with Operators provide effects of extreme external hazards cooling of corium					
Fukushima Daiichi U1	Inadequate design basis for external hazards Accident management can't deal with Operators provide effects of extreme external hazards cooling of corium					
Chernobyl U4	Operators unaware of design's hazards. Inadequate, procedures, and operational discipline. Poor accident response disassembly					
Saint Laurent A2	In vessel components car Reactor trip setpoint on f	ne loose unexpectedly, ission product release t	No loose parts monitor oo high to prevent dama	ing. Automatic trip: Hig age Fission Product Activi	<mark>gh</mark> <u>ty</u>	
TMI-2	Poor training, procedures, discipline, MCR design, &	operational I&C design	Operators shut down symptoms of I	ECCS and don't recognize oss of coolant/flow	Operators restore core cooling	
KS 150	Inadequate QA for fuel a with unreliable fuel ten	ssemblies. Operation	Shutdown delayed to fuel temperature read	check Manual trip: High dings	Fuel ture	
Lucens	Fuel assembly prone to fl not considered. Fuel	ow blockage. Effects o assembly instrumentati	f water leakage into coo on not sensitive enough	Automatic trip: Fission Product Act	ligh	
Chapelcross U2	Provisions fo Fuel failure not detect	or detecting fuel damag ed before melt due to i	e inadequate nstrument time delays	Manual trip: High Fissi Product Activ	on ity Termination	
Saint Laurent A1	Training, SW-V&V, HMI, RTS setpoint inadequate	Operator c	overides interlock	Automatic trip: Hi Fission Product Activ	gh ity	
Fermi 1	No safety analysis for me loads caused shee	etal sheets in reactor ve ets to come loose and b	ssel coolant inlet Hydroc lock two fuel assemblies	dynamic Manual trip s. containment ra	b: High diation	
WTR	Inadequate operating pro	ocedures, training & fue ure. No confinement isc	QA. No reactor trip on t Nation	Fuel relocation and manual shutdown		
SL-1	Single rod withdrawal could cause criticality	Operator withdraws cen	tral control rod too far &	too fast	Core disassembly & moderator ejection	
SRE	Pump shaft coolant pr resulting in flow bloc	operties unknown kage within core	Operators didn't inves of reactor t	stigate causes Man rips investiga	ual shutdown to te fuel condition	
HTRE-3	Inadequate CM. Failure to validate automatic control system design and configuration settings before use. Control/protection interaction.					
Windscale U1	Inadequate knowledge about Wigner release. Inadequate core temperature measurement. Inadequate Burning fuel removed procedures. Confinement only partially effective.					
EBR-I	Inadequate test procedure. Lack of common operating terminology between test director Manual trip: Short and operator. RTS set point for high power trip too high for test conditions. Period					
105 KW	Inadequate control of t 1001 rea	emporary changes and actor trip on low flow in	instrument calibration. channel	Automatic trip: hig flow in channel (ruptur	<mark>gh</mark> e)	
NRX	Inadequate safety analysis procedures & I&C.	S, Operator error	Safety rods fail to	fully insert after scram.	Manual trip: diverse shutdown system	

We've done a good job of limiting the public's radiation exposure

- Few events involved offsite emergency response
- No deterministic effects of radiation exposure to the public
- Only Chernobyl had identifiable stochastic effects
- 14 events had low or no offsite release
- Two events killed operators

At two sites radiation exposure was not the most important consequence

- Chernobyl and Fukushima Daiichi
 - Widespread contamination which disrupted lives, created anxiety and heavily impacted the economy
- At Fukushima Daiichi, for example
 - 210,000 people were evacuated
 - About 60 hospital patients died because of difficulties with evacuation
 - About 300 km² of land removed from use for a long time
 - Serious economic consequences
- We must prevent this in the future

I&C or HSI issues contributed to every event

7 events

14 events

8 events

5 events

- Inadequate functionality
 6 events
- I&C availability
- Design issues
- HMI issues
- I&C lifecycle issues
- Lack of data for investigation 5 events
- Most events involved more than one issue

Additional contributing factors

- Inadequate knowledge of the plant
- Procedure issues
- Operational discipline issues
- Training issues

13 events12 events6 events9 events

Design requirements evolution earlier and new concept of plant states

What have we learnt from accidents to improve plant designs

Accident 'driven' improvements

- After TMI
 - Operating procedures, EOPs
 - HMI design
 - Operator training in understanding transients (FSS, glass model)
 - Emergency plans
- After Chernobyl
 - Safety culture
 - Design of core (reduce positive void coef.)
 - Concept of non-routine tests
 - Training programmes (incorporate FSS training)

Accident 'driven' improvements

- After Fukushima
 - Assessment of external events (seismic, tsunami)
 - Procedures and means for coping with extended SBO
 - Preserving containment integrity (H₂ management, venting)
 - SAMG and accident mitigation equipment (multiunit approach)
 - Operator training and drills
 - Robust instrumentation, availability of information at TSC
 - Equipment qualification (external events, severe accident conditions)
 - Conducting Stress Tests

Concept of plant states and design envelope

SSR-2/1, 2012

Plant Design Envelope				Beyond Plant Design Envelope
Operat	Operational States Accident Conditions			
NO AOO		DECs		Conditions
	DBAs (safety systems)	DECs without significant fuel degradation	DECs with core melting	eliminated

Plant states considered in the design (SSR 2/1, rev.1)

- Within the 'design basis'
- In Design Extension Conditions (DEC)

Design requirements for accident conditions (SSR 2/1, rev.1)

- Design basis accident (DBA)
 - A postulated accident for which a facility is designed
 - Established design criteria
 - Conservative safety assessment methodology
 - "Postulated' internal and external events (natural and human induced)
 - Radiological criteria kept within established limits
- Design extension conditions (including SA)
 - Postulated accident conditions 'beyond' DBA
 - Considered in the design process of the facility
 - External events with low probability considered
 - Best estimate methodology used
 - Radiological criteria for off-site releases kept within acceptable limits

How we identify a set of DEC?

- Operating experience, particularly for LWR technology
- Deterministic evaluations (DSA)
- Probabilistic insights (PSA)
- Engineering judgement

Examples of DEC w/o significant fuel degradation identified deterministically

- Anticipated transient without scram (ATWS)
- Station blackout (SBO)
- Loss of core cooling in the residual heat removal mode
- Extended loss of cooling of fuel pool and inventory
- Loss of normal access to the ultimate heat sink

Examples of DEC w/o significant fuel degradation derived from PSA

- Total loss of feed water
- LOCA + loss of one emergency core cooling system (high pressure or the low pressure emergency cooling system)
- Loss of the component cooling water system or the essential service water system
- Uncontrolled boron dilution
- Multiple steam generator tube ruptures (for PWRs)
- Steam generator tube ruptures induced by main steam line break (for PWRs)
- Uncontrolled level drop during mid-loop operation (for PWRs) or during refueling

DEC with core melting (severe accident)

- IAEA
- A representative group of severe accident conditions to be used for defining the design basis of the mitigatory (safety) features
- Important
 - Sufficient knowledge on different severe accident phenomena
- Main objectives
 - Preventing the loss of containment integrity
 - Cooling and stabilization of the molten core
 - Preventing ex-vessel scenario
 - Keeping radiological criteria for off-site releases within acceptable limits

Design features for DEC (SSR 2/1, rev.1)

- Shall be identified and designed for preventing or mitigating events considered in DEC
- Shall have the following characteristics
 - Be independent, to the extent practicable, of those used in more frequent accidents (e.g. DBA)
 - Be capable of performing in the environmental conditions pertaining to these design extension conditions, including severe accidents
 - Have reliability commensurate with the function that they are required to fulfil

Conclusions

- We will never completely eliminate the possibility of a severe accident
- But we can make better provisions for protecting people and environment
 - More robust provisions to ensure core cooling (e.g. passive cooling, containment heat removal)
 - More robust methods for dealing with molten core (e.g. provisions for corium retention)
 - Severe accident management procedures, training, and equipment that can deal with the unexpected
 - Minimize reliance on active components in plant systems
 - Have default paths that can deal with missing information including no information
 - Alternative means for powering minimum set of devices needed to establish core cooling

PSA training

- Full scope PSA trainings (tailored for audience)
- Theory + <u>Practical</u> exercises
- Topical workshops on specific PSA areas:
 - PSA approaches and applications (newcomers)
 - L2 PSA, Shutdown PSA, Fire PSA, Seismic PSA, etc.
 - International, regional and national platforms

Education & Trainings

- Trainees act as PSA team: aim is to construct PSA model for simplified NPP (see below)
- Simplified NPP: different designs, major systems

* Examples available for PWR and BWR, could be adjusted to the needs of MS

Thank you!

