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1 Executive Summary 

A generic, step-wise, iterative methodology for multi-risk integration using Bayesian networks 
(BNs) is proposed. The method relies on the predictive capabilities of the BN to estimate top 
and intermediate event probabilities and uses its diagnostic inference abilities to analyse 
sensitivity and improve network efficiency. The BN-based risk methodology was applied to the 
project accident scenario at a virtual nuclear power plant (NPP) developed within Work 
Package 4 of the NARSIS project. The accident scenario involves an external hazard event-
related loss of offsite power that leads to a station blackout event and eventually to failure of 
the secondary cool-down system. Earthquake and flooding hazards, along with their 
interactions, were considered in the risk analysis. The interaction of these hazards with the 
subnetworks developed in deliverable D3.2 (Mohan et al., 2021) was modelled using the BN 
methodology. Subnetworks modelling the following aspects were integrated: 

(i) Station blackout under loss of offsite power 

(ii) Failure of the secondary cool down system following station blackout 

(iii) Geotechnical reliability of a flood control dike 

(iv) Human error probability estimation for an operator action during event 

progression from station blackout to failure of the secondary cool down system 

The integration of hazards with subnetworks was performed in two ways. The first method is 
an object-oriented BN (OOBN) approach where basic fault trees (FTs) and hazard trees in 
existing probabilistic safety assessment (PSA), can be individually converted to BNs - risk 
objects. These separate risk objects are integrated by defining their interactions as per the 
associated event trees (ETs). In the second approach, a unified BN is constructed by 
combining hazards and all subnetworks within a single BN. Both these approaches were 
demonstrated using the station blackout subnetwork. The OOBN approach allows for an exact, 
parallel conversion of ETs and FTs, as in the existing PSA. While predictive and diagnostic 
inference are possible within risk objects, only predictive inference is possible across risk 
objects. The unified BN allows for both predictive and diagnostic inference between the top 
event and all subnetworks. However, the unified BN can prove to be computationally more 
demanding than the OOBN approach. For the project accident scenario, the unified BN 
approach resulted in a 1 to 2 orders of magnitude increase in run time and a linear increase in 
memory used, as compared to any of the individual subnetworks.  

A unified BN was built to integrate multiple hazards with the aforementioned subnetworks. The 
unified network indicated a relatively low probability of a hazard-induced accident. However, if 
the hazard events were to occur, they would significantly increase the chance of an accident. 
Using a unified BN approach allowed for interaction of the subnetworks with the hazards as 
well as with each other. Diagnostic analysis of the influence of dike failure mechanisms on the 
top event occurrence were possible due to the representation of advanced numerical models 
of flood defence reliability as BN-based surrogate models. Similarly, the integration of a BN-
based human reliability subnetwork allowed to assess the influence of human performance 
shaping factors on the probability of top event occurrence. 

The use of BNs in a multi-risk integration methodology provide several advantages including 
the accurate modelling of dependencies between hazards. Such unified BNs also allow the 
identification of dependencies between top events and the parameters driving fragilities of 
systems, structures and components (SSCs), which may not be normally be considered in 
design. However, modelling the interaction of multi-hazards with several SSCs in a single BN 
can result in a computationally intensive BN that is difficult to decipher visually. 

While system-level implementation of BNs is valuable and relatively easy, plant-level 
implementation can also be possible with a judicious approach to BN application. All the 
ET/FTs at an NPP may be converted to risk objects using the OOBN approach, to firstly 
reproduce the results of existing PSA. Subnetworks may be integrated using unified BNs when 
deemed necessary. While this may not represent a complete solution that models every known 
dependence in the NPP, BNs can still complement and improve existing PSA results. 
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2 Introduction 

One of the key objectives of the NARSIS project is to improve the integration of external 
hazards and their consequences using state-of-the-art risk assessment methodologies. Within 
NARSIS Work Package 3 (WP3), Deliverable D3.1 (Mohan et al., 2018) presented a review of 
various risk integration methods and identified Bayesian networks (BNs) as a suitable 
framework for considering external hazards and consequences. Deliverable D3.2 (Mohan et 
al., 2021) presented the methodology and examples of the development of individual BNs 
(subnetworks) characterising various technical and human aspects within a nuclear power 
plant (NPP) during an external event related accident scenario. This deliverable (D3.4) 
presents the methodology and its application for integration of the above subnetworks, within 
a BN-based risk framework. 

A simplified example accident scenario was assumed for the purpose of demonstrating 
subnetwork development and BN use in the context of NPP risk assessments. It is noteworthy 
that the accident scenario or associated subnetworks may not be completely representative of 
any real NPP or the various systems, structures and components (SSCs). The plant design 
details or event progressions are details that are of lower importance for this study. 

A comprehensive multi-risk integration methodology, using BNs, is presented. For the chosen 
accident scenario, the subnetworks developed in D3.2 (Mohan et al., 2021) are integrated 
using this BN-based method. 

2.1 Multi-risk integration in the nuclear industry 

The safety of facilities, such as those belonging to the chemical, aviation and nuclear 
industries, is threatened by several hazards (Janic, 2000; Lees, 2005; US NRC, 1975). The 
critical feature, common to the aforementioned industries, is that the consequences from 
adverse events at these facilities can be catastrophic (Hopkins, 2011). A very high safety level 
is warranted and usually achieved, and therefore, industries such as nuclear, chemical and 
aviation may be termed as high reliability industries (Hofmann et al., 1995; Rausand, 2013). 

Risk assessments in high reliability industries pose several challenges. Low-probability, multi-
hazard combinations and their cascading effects, must be considered due to the potentially 
catastrophic consequences (Roberts, 1990). These facilities are generally composed of 
several interacting systems, and accounting for these interactions makes them complex to 
analyse. Moreover, there are very few cases of significant accidents in these industries, which 
precludes conventional statistical analysis to predict future risks (Leveson et al., 2009). 
Probability estimates of various hazards and their impact to SSCs, are also subject to 
uncertainty. Thus, high reliability industries require a multi-risk integration framework that 
considers even low-probability external hazard events. The risk framework should account for 
the impact of these hazards on complex, dependent systems, and also allow for inclusion of 
expert judgement where data is sparse. The risk framework must also be suitable for tracking 
uncertainties in the data and propagating them to the final risk estimate. 

Multi-risk assessment involves the consideration of not only different hazards but also their 
interactions with other hazards (Mignan et al., 2014; van Erp and van Gelder, 2015). 
Interactions between hazards happen in two ways: (i) hazards may independently occur within 
a short time window, or (ii) the occurrence of one hazard may have cascading effects that lead 
to one or more other hazards. The impact on SSCs from hazards, i.e. their fragilities, can be 
classified into two types: (i) the SSCs are impacted by multiple hazards at the same time or, 
(ii) multiple hazards affect the SSCs at different times, progressively damaging them over time. 
Further, different intensity measures (IMs, or loading types) of the same hazard can also affect 
SSCs differently (Gehl et al., 2013). For instance, the peak ground acceleration (PGA) and the 
spectral acceleration at a period of 0.5 s of an earthquake event, may have different effects on 
the same structure. Vector-based fragility models have been shown to perform better than 
single-IM fragility curves, in multi-hazard scenarios where SSCs are sensitive to different IMs 
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(Gehl and Rohmer, 2018). Given such a wide variety of hazards and SSCs, it is also important 
to identify which hazards and fragilities contribute most to the risk. This enables efficient 
allocation of resources towards advanced hazard and fragility analyses that could reduce the 
uncertainty in risk estimates. 

Another aspect of multi-risk assessments is the consideration of risk from human error. Current 
methods often rely on the separate calculation of human error, and their integration with the 
overall risk assessment framework for the NPP becomes challenging. In this regard, several 
improvements have been proposed (Ale et al., 2006; Kazemi et al., 2017; Mohaghegh et al., 
2009). Nevertheless, this study aims to improve the integration of human factors with the 
overall risk framework, while also handling aforementioned challenges such as hazard 
dependence, vector-based fragility and expert judgement integration.
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3 Bayesian network-based risk integration framework 

This study presents an integrated risk framework that can meet the aforementioned 
requirements for high reliability industries. BNs are used for risk integration to account for 
dependencies between hazards and their interaction with SSCs. Sensitivity analysis in the 
network allows the elimination of hazards and dependencies with negligible impacts on the 
calculated risk. Bayesian inference within the network is used to identify critical ranges of 
hazards and fragilities, enabling focused secondary analyses that can improve overall risk 
estimates. Thus, the BN would act both as a screening tool and as an overall risk integration 
framework. 

3.1 Bayesian networks 

A BN is a specific application of Bayesian probability theory. It is a directed acyclic graph, 
composed of ‘nodes’ that correspond to random variables and ‘arcs’ that link dependent 
variables. The directions of the arcs indicate the dependencies between the nodes (i.e. 
directed), and these arcs never cycle back from the child nodes to the parent nodes (i.e. 
acyclic). Hence, the network is a visually explicit representation of the mutual relationship 
between random variables, and represents the joint probability distribution (JPD) of all random 
variables within the model (Koller and Friedman, 2009). A simple example is shown in Figure 

1. The random variables in the network may be represented by discrete or continuous 
probability distributions. 

 

 

Figure 1: Example of a Bayesian network; Xi indicates a random variable. 

 

The dependencies between random variables are usually encapsulated within conditional 
probability distributions (given by (P(Xi|Parents(Xi)), where P indicates probability and | 
indicates conditionality) at each node. The JPD is given by the chain rule of BNs: 

 P(𝑋1, 𝑋2, … , 𝑋𝑛) =  ∏ P(𝑋𝑖

𝑛

𝑖=1
|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) Eq. (1) 

   

The JPD of the example in Figure 1 is given by: 

 P(𝑋1, 𝑋2, 𝑋3, 𝑋4) = P(𝑋1)𝑃(𝑋2| 𝑋1)𝑃(𝑋3|𝑋1, 𝑋2)P(𝑋4| 𝑋2) Eq. (2) 

   

The JPD can be queried to infer the state of a random variable, given our beliefs regarding the 
other variables, via Bayesian inference. In other words, BNs can be used to answer 
probabilistic queries in a multivariate problem when one or more variables have been 
observed. The types of inference algorithms and other characteristics, advantages and 
challenges associated with BNs are discussed in detail in D3.2 (Mohan et al., 2021). 
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3.2 The risk integration methodology 

The methodology proposed in this study consists of a series of five steps in which a risk 
integration BN is constructed and calculations are run using it. These steps are consecutively 
implemented in two stages - Levels I and II. Figure 2 presents the outline of the methodology. 

Level I Integration 

The objective of Level I integration is to assess the impact of various hazards and damage 
states of SSCs, on the probability of the adverse end event. During Level I, it is possible to 
assume regional hazard curves and/or generic fragility models (based on similar components) 
that are not necessarily site-specific. At the end of Level I integration: 

(i) inconsequential nodes (random variables associated with hazards) and arcs 

(dependencies between hazards or IMs) are identified from sensitivity analyses 

(ii) critical ranges of hazards and damage states are determined through diagnostic 

inference in the BN 

These results are transferred to Step 1 of Level II Integration, where the steps 1-5 are repeated 
in the light of results from Level I. 

The following five steps are implemented sequentially in each of Level I and II, as shown in 
Figure 2: 

Step 1 – Single and multi-hazard analysis, event sequence definition, and fragility modelling: 
(i) A list of relevant hazards is selected based on historic events at the industrial facility 

of interest. Hazard curves for the return period(s) of interest are calculated for all 

hazards, either from regional data or site-specific information, if available. 

(ii) Based on the approaches prescribed in Liu et al. (2015), feasible hazard 

interactions and cascades are identified. These can also be theorised based on the 

site location. Conditional probability distributions are determined in the case of 

dependent intensity measures (IMs), concurrent hazards and cascading hazards. 

(iii) The adverse top event of interest is known and the corresponding event sequence 

is determined, either logically by experts or by using existing PSA information such 

as event trees and fault trees. 

(iv) Based on the event sequence, the list of SSCs involved are determined. The event 

sequence is used to ascertain dependence between random variables in the risk 

analysis – hazards, damage states of SSCs and consequential events in the 

industrial facility. 

(v) For every pairwise combination of a hazard and an SSC, fragility models are 

developed or obtained from literature, including vector-based fragilities considering 

multiple IMs. 
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Figure 2: Step-wise multi-risk integration methodology using Bayesian networks 

Step 2 – Screening hazard probabilities using fragility models 

The objective of this step is to identify the relevant ranges of hazard magnitudes that would 
affect various SSC. Each of the selected hazards is assessed against the corresponding 
fragility model of every SSC, independently. For a given hazard, the lowest hazard magnitude 
that triggers damage amidst all SSCs is chosen to determine the lower bound of that hazard 
curve (threshold value of damage is of interest here). Hence, refined probability distributions 
across the relevant range of magnitudes, are available for the occurrence of each hazard or 
hazard combination. 

Step 3 – Bayesian network definition 

The selected hazards, damage states and consequential events in the facility are chosen as 
the (random) variables of interest and comprise the nodes of the BN. The arcs of the BN are 
defined by the chosen hazard interactions, accident event sequence and/or expert judgement, 
where required. If the accident sequence is derived from existing PSA information such as 
event trees and fault trees, these can be directly converted to a BN based on (Bobbio et al., 
2001). Such event and fault trees are usually composed of system events within the facility, 
and external hazard events are not explicitly included. Accordingly, if the BN is obtained from 
conversion of fault trees, only hazards and their dependence with SSCs need to be additionally 
defined in the BN. 
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The conditional dependence between variables involved is known from the fragility models, 
event sequence (for e.g. fault tree logic gates) and/or expert judgement, where required. 
Expert judgement may be used to define conditional probability relations based on Cooke 
(1991). The application of this method to various industries has been reviewed by Cooke and 
Goossens (2008). Thus, at the end of Step 3, the entire structure of the BN is available with 
nodes (random variables in the risk analysis), arcs (directional dependence between random 
variables) and associated marginal or conditional probability distributions at each node. 

Step 4 – Calculating probabilities of damage states and adverse end event 

Predictive inference in the BN is used to calculate the probability of damage states, using the 
conditional probability distributions. For different hazard levels or damage states, the 
probability of the top event is also calculated in the BN. 

Step 5 – Evaluating causal importance and likelihood 

Sensitivity analyses are performed in the BN, to identify hazards that have negligible impact 
on the probability of occurrence of the top event. Similarly, the impact of dependencies 
between different hazards or between IMs of the same hazard can be assessed. Further, 
diagnostic inference is used; i.e. the top event is assumed to have occurred and the posterior 
probability distributions of hazards and damage states are calculated. This provides the range 
of hazards and damage states that are most likely to cause the top event. 

Level II Integration 

The objective of Level II integration is to thoroughly investigate impactful hazards and 
fragilities, and arrive at the end event probability using a more efficient BN. In this level, 
inconsequential hazards and dependencies, determined in Level I, are removed from 
consideration. During Step 1 of this level, site-specific analyses for specific hazards (single 
and multi-hazards) of interest may be performed, if not included in Level I. Fragility analyses 
can be performed for specific SSCs for these hazards or combinations, focusing on the critical 
range of hazards and damage states determined in Level I. Results from these targeted, site-
specific analyses can be incorporated into the BN in Step 3. If no further improvements are 
possible or necessary, on the hazard and fragility data used in Level I, the BN in Level II is still 
computationally more efficient because inconsequential hazards and dependencies have been 
removed. Steps 4 and 5 are implemented as before. 

Hence, at the end of Level II, the BN has been filtered to its most efficient structure, with the 
most relevant data and provides the best estimate for probability of occurrence of the top event 
at the NPP. Any new information, if made available, can be similarly included in subsequent 
levels, producing updated probabilities for the top event. 

It is important to note that some of these steps and/or iterations can happen out of sequence 
or simultaneously. For e.g. the filtering of inconsequential hazards can already happen in a 
dedicated multi-hazard analysis (as in NARSIS WP1), without the use of the BN. This 
framework is only a guide to the different steps involved in building a BN-based multi-risk 
model. 

3.3 Some potential challenges and solutions 

Multi-hazard integration with BNs can present several challenges. Here we look at two 
expected difficulties and their respective solutions. Converting large event and fault trees to 
BNs (in Step 3 of the above methodology) can result in large discrete BNs. The computational 
demands of these BNs are still usually not a problem as the fault trees are only a specific case 
of the BN and implement the same logic. However, when hazard nodes are added to the BN 
and several subnetworks are combined together, the computational demands can rise 
significantly. 
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3.3.1 Discretised distributions 

Hazard events given by detailed probability distributions, spanning a wide range of their 
intensity measure(s). The use of the dynamic discretisation algorithm in AgenaRisk® allows for 
the relatively easy use of continuous variables (Neil et al., 2007). However, it is rare to fit 
parametric continuous distributions to hazard nodes and hence, hazard distributions are often 
discretised. The challenges associated with using continuous and discretised variables are 
discussed in detail in D3.2 (Mohan et al., 2021). Discretising these distributions for risk 
integration can result in large discrete BNs with significant computational demands. 

The Noisy-OR is an assumption that is useful in simplifying large discrete BNs, allowing the 
number of conditional probability table (CPT) entries to grow linearly with the number of 
parents (Pearl, 1988). This concept is most easily exemplified by the binary Noisy-OR gate. 
Let 𝑋1, … 𝑋𝑖, … , 𝑋𝑛 be 𝑛 binary parents of 𝑌, where: 

(i) each of 𝑋𝑖 has a probability 𝑝𝑖 of being sufficient to cause 𝑌 to be true, when all 
other parents are false, and 

(ii) the probability of each parent being true is independent of the states of the other 
parents. 

The above two assumptions enable the specification of the conditional probability distribution 

of 𝑌 using only 𝑛 probabilities, 𝑝1, … 𝑝𝑖 , … , 𝑝𝑛. 𝑝𝑖 can be expressed as: 

 𝑝𝑖 = P(𝑦 | 𝑥1
′ , … 𝑥𝑖, … , 𝑥𝑛

′ ) Eq. (3) 

   

Where 𝑥𝑖
′ is the complement of 𝑥𝑖. 

Given any 𝑋𝑝 belonging to the 𝑋𝑖 ’s that are true, the following applies: 

 P(𝑦 | 𝑋𝑝) = 1 − ∏ (1 − 𝑝𝑖)

𝑖:𝑋𝑖∈𝑋𝑝

 Eq. (4) 

   

With just the above equation, the complete CPT for the child node 𝑌 can be derived, given any 
𝑋𝑝. 

The next step to the Noisy-OR assumption is the leaky Noisy-OR gate, where the child variable 
may be true even if all of its parents are false. In other words, all the causes of 𝑌 are not 

explicitly known and there are unknown reasons for 𝑌 to be true. The probability that 𝑌 can 
occur despite the explicit causes being false may be termed as the leak probability, 𝑝0 given 
by: 

 𝑝0 = P(𝑦 | 𝑥1
′ , … , 𝑥𝑛

′ ) Eq. (5) 

   

In the leaky Noisy-OR assumption, 𝑝𝑖 (𝑖  0) is the probability that 𝑌 is true when 𝑋𝑖 is true (not 
necessary that 𝑋𝑖 being true causes 𝑌 to be true) and all other parents are false. Let 𝑝𝑖

′ be the 

probability that 𝑌 is true when 𝑋𝑖 is true, when all other parents are false and unmodelled 

causes are also absent (i.e. 𝑋𝑖 being true causes 𝑌 to be true). This implies: 

 1 − 𝑝𝑖
′ =

1 − 𝑝𝑖

1 − 𝑝0
 Eq. (6) 

 

Now, in the case of the leaky Noisy-OR, given any 𝑋𝑝 belonging to the 𝑋𝑖 ’s that are true, the 

following applies: 

 P(𝑦 | 𝑋𝑝) = 1 − (1 − 𝑝0) ∏
1 − 𝑝𝑖

1 − 𝑝0
𝑖:𝑋𝑖∈𝑋𝑝

 Eq. (7) 
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Hence, with the above equation, the complete CPT for the child node 𝑌 can be derived, given 
any 𝑋𝑝. Another way of expressing the Noisy-OR concept, is using the concept of an inhibitor. 

For any 𝑖, if 𝑋𝑖 is true then 𝑌 is true with a certain probability unless a preventing factor – the 
inhibitor – prevents it with probability 𝑧𝑖. All such inhibitors are assumed to be independent. 

The Noisy-OR is a particular case of a more general concept called divorcing. Consider the 
BNs in Figure 3a, with parents a1, a2, a3 and a4 and child variable b. This BN can be modified 
to an equivalent BN by introducing an intermediary variable c as shown in Figure 3b. While the 
first BN, will require 24

 entries for the CPT of b, the second BN will need a total of 22 + 23 (< 24) 
CPT entries at nodes c and b. This is called divorcing. 

   

 

Figure 3: (a) Example network for divorcing; (b) nodes a1 and a2 are divorced from a3 and a4 using c 

3.3.2 Damage state calculation using fragility functions 

When the hazard distributions are discretised, the CPTs at component damage state nodes, 
calculated using fragility functions, can become large. Despite simplifications such as the Noisy 
OR, building CPTs for complex problems be unwieldy as the networks can be large and the 
variables can have multiple states, often leading to errors and offhand quantification. Instead 
of using CPTs at component nodes, the fragility calculation can be performed using 
“simulation” or continuous nodes in AgenaRisk®. For instance, seismic fragility functions are 
often represented using lognormal distributions and the probability of failure of the component 
is obtained by applying the standard normal cumulative distribution function (CDF), as shown 
below: 

 𝐹𝑅(𝑥) = Φ [
ln (𝑥 𝑚𝑅)⁄

𝛽𝑅
] Eq. (8) 

   

in which, Φ[. ] is the standard normal probability integral, 𝑚𝑅 is the median fragility, and 𝛽𝑅 =
 𝜎𝑙𝑛𝑅 is the logarithmic standard deviation (or dispersion) of the fragility. 

Rather than externally calculating and populating large CPTs, the following method can be 
used as shown in Figure 4, where the dashed borders indicate nodes that are included for 
arithmetic calculations that render a large CPT at the damage state node, “EDG EQ Failure”, 
unnecessary. The probability distribution at the “Earthquake PGA” node is discretized and the 
extent of discretization would determine the size of the CPT at “EDG EQ Failure”, if a direct 
dependence was defined between hazard and damage state nodes. Instead, the conditional 
probability distribution of simulation node “edg_eq_cont” is given by the fragility function of 

form [
ln (𝑥 𝑚𝑅)⁄

𝛽𝑅
], where 𝑥 is substituted by the PGA value from its parent. The simulation node 

edg_normcdf calculates the standard normal cumulative distribution function for the 
distribution of values in its parent node, “edg_eq_cont.” AgenaRisk® does not have an in-built 

approximation for the calculation of the standard normal operator Φ, but instead, a suitable 
arithmetic approximation can be used (Yerukala and Boiroju, 2015). Now, the result at node 
“edg_normcdf”, is a continuous distribution in [0,1] or [-1,1], depending on the approximation 
used for Φ. The mean value of “edg_normcdf” will correspond to the failure probability of the 
component, with the “sign_edg” merely acting to obtain a positive value of failure probability in 
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the case “edg_normcdf” is in the range [-1,1]. Using what is called the “binomial trick” (Fenton, 
2015), the continuous distribution can be converted to a Boolean node giving the damage state 
probabilities. The advantage of using this method is that fragility calculations are performed 
fully within the BN, and it does not require population of large CPTs in the case of a discretized 
hazard distribution. If the hazard distribution can be fit to a parametric distribution, this method 
also allows for the hazard node to remain continuous without the need for computationally 
costly discretisations. If required, further uncertainty may be accounted for by using an 
appropriate lognormal distribution in a simulation node, as parent to “edg_eq_cont”, from which 
the fragility parameters 𝑚𝑅 and 𝛽𝑅 can be sampled. 

 

 

Figure 4: Calculation of damage states within BNs, using fragility functions 
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4 Project accident scenario and subnetworks development 

The details of the project accident scenario and subnetwork development are discussed in 
NARSIS deliverables D3.2 (Mohan et al., 2021) and D4.5 (Kaszko et al., 2021). A summary is 
presented here. Figure 5 presents a flowchart of the generic methodology for developing 
subnetworks, for the use of BNs in NPP risk assessment. This methodology is not limited to 
NPPs and can also be applied in other industries, for e.g. chemical plants or aerospace 
applications. 

 

 

Figure 5: Generic methodology for development of Bayesian subnetworks for external hazard related NPP 
accident event. The subnetwork development methodology was applied to the project accident scenario defined 

herein (Mohan et al., 2021). 

Project Accident Scenario 

 Loss of offsite power (LOOP) has occurred following one or more external hazard 
events 

 During the LOOP situation, failure of all (of four) emergency diesel generators (EDGs) 
would lead to a station blackout (SBO) situation 

 Following SBO, failure of the steam generator (SG) used for residual heat removal 
(RHR) or partial cool down (PCD), would lead to failure of secondary cool down (SCD). 

Hence, risk assessment of the project accident scenario aims to evaluate the probability of 
having SBO and SCD failure following LOOP induced by external hazard events. 

The BN-based methodology is implemented to model the above project accident scenario. The 
design details of the various SSCs considered within this example are not of primary 
importance, and hence, their accuracy or completeness are not critical to this study. The 
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purpose of this example is to demonstrate the use of BNs in NPP risk assessments and present 
the advantages and disadvantages of adopting the BN framework. Nevertheless, the project 
accident scenario is represented with sufficient complexity. 

The NPP considered in this case, is the virtual power plant (VPP) developed as part of WP4 
within the NARSIS project (Bruneliere et al., 2018). The VPP is a generic generation III+ NPP, 
whose associated event and fault trees are obtained from deliverable D4.1 (Bruneliere et al., 
2018). 

Hazards 

While the VPP is developed using a specific design, there is no specific location in Europe 
associated with the VPP. Thus, for the consideration of external hazard events, a 
decommissioned NPP based in Mülheim-Kärlich, Germany is chosen as the site of interest. 
The VPP does not correspond with the actual design details of the Mülheim-Kärlich NPP. The 
relevant hazards at this site are discussed as part Deliverable D1.6 (Daniell et al., 2019). For 
the purpose of this report, the following hazards were considered – earthquake and flooding, 
as in D4.5 (Kaszko et al., 2021). 

Event and fault trees 

As mentioned above, event trees corresponding to project accident scenario are obtained from 
deliverable D4.1 (Bruneliere et al., 2018). Figure 6 shows the event progression from LOOP to 
SBO, while Figure 7 shows the event progression from SBO to SCD (denoted as SCD_11 in 
the event tree). The description of function events and corresponding codes in Fig. 9 and Fig. 
10 are not presented here and may be found in D4.1 (Bruneliere et al., 2018).  

 

 

Figure 6: Event tree for progression from loss of offsite power to station blackout 

 

 

Figure 7: Event tree for progression from station blackout to secondary cool down failure 

 

  

Severe Accident Simualtions

RHR  – Residual Heat Removal

PZR  – Pressurizer

PCD   – Partial Cooldown

FSCD  - Fast Secondary Cooldown

MSRT – Main Steam Relief Train

MSSV – Main Steam Safety Valves

MHSI – Medium Head Safety Injection

LHSI – Low Head Safety Injection

EFWS – Emergency Feedwater System

CHRS – Containment Heat Removal System (also SAHRS)

IRWST – In-Containment Water Storage Tank

SP – Seal LOCA

TP – No-Seal LOCA 

F – Failure

S - Success

F&B – Feed and Bleed
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4.1 SBO subnetwork 

This subnetwork pertains to the fault tree leading to SBO, during LOOP. Since existing 
information from a traditional PSA approach is available, it is efficient to use this to construct 
a BN. The subnetwork is constructed by converting the fault tree associated with the event 
tree shown in Figure 6. Figure 8 shows the BN corresponding to SBO fault tree, including 
common cause failure (CCF) events. 

 

 

Figure 8: Station blackout Bayesian network (SBO BN) 

4.2 SCD_11 subnetwork 

Similar to the SBO BN, the SCD_11 subnetwork is constructed by converting the 
corresponding event and fault trees. Figure 9 shows the SCD_11 BN including all CCFs. This 
network also consists of the operator action that is modelled in the human subnetwork 
discussed later. 

Both the SBO and SCD_11 networks demonstrate the ability of equivalent conversion of event 
and fault trees to BNs without loss of information or capabilities. 
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Figure 9: SCD_11 BN 

 

4.3 Flood defence subnetwork 

The development of the flood defence subnetwork and its results are presented in Mohan et 
al. (2019) and D3.2 (Mohan et al., 2021). This subnetwork (shown in Figure 10) acts as a 
surrogate model to an advanced numerical model – following the random finite element 
method (Fenton and Griffiths, 2008; Hicks and Samy, 2004) - used to estimate reliability of the 
flood defence dike. 

 

 

Figure 10: Flood defence BN 

The concepts demonstrated using the flood defence BN may be used in building surrogate 
models for any system (Mohan et al., 2019). The BN was shown to be a convenient tool for 
reliability updating while providing a visual representation of the interaction of model 
parameters, both amidst themselves as well as with the final reliability estimate. The value of 
additional testing on the system was also evaluated from the BN. This subnetwork also 
demonstrates the capability of BNs to handle continuous probability distributions. 
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4.4 Subnetwork modelling hazard-fragility interaction 

The next subnetwork models the interaction between hazards and fragilities using the example 
of seismic risk to an EDG building at an NPP. Vector-valued fragility functions were developed 
as part of this effort to quantify the interaction between multiple intensity measures (IMs) – 
spectral acceleration at different time periods – and the SSCs (concrete structure and EDGs). 
The hazards, components and their vector-valued fragility interactions were modelled using 
BNs (Gehl and Rohmer, 2018). Figure 11 shows the structure of the BN used to model 
probability of occurrence. 

 

 

Figure 11: BN modelling hazard-fragility interaction 
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4.5 Human subnetwork 

The last subnetwork is a BN estimating the human error probability (HEP) associated with an 
operator action in the SCD_11 BN – operator fails to start and control the emergency feedwater 
system (EFWS). The BN-SLIM procedure developed as part of the NARSIS project is used for 
HEP estimation (Abrishami et al., 2020). Such a BN-based method allows for direct integration 
of the HEP estimation model with the overall risk assessment BN for the accident scenario. In 
addition, structured expert judgement elicitation was used in populating the probability 
distributions of performance shaping factors (PSFs) for the operator action. This demonstrates 
the ability of BNs to easily integrate expert opinion while representing and tracking the 
associated uncertainty. The details of the human reliability BN, including the description of PSF 
ratings (R1 to R9) and the expert elicitation process, are presented in Abrishami et al. (2020) 
and D3.2 (Mohan et al., 2021). Figure 12 shows the human reliability BN. 

 

 

Figure 12: Human reliability BN
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5 BN-based integration for project accident scenario 

In this section, the subnetworks listed previously are integrated along with their interaction with 
external hazards, within the project accident scenario, to demonstrate the BN-based method 
for a realistic case. Specifically, the SBO, the SCD_11, the flood defence BN and the human 
reliability BN are integrated along with their interactions with external hazards – earthquake 
and flooding events. 

5.1 Existing PSA approach 

For the given accident scenario event and fault trees were constructed and the accident 
probability was evaluated using both a conventional PSA approach as well as a BN-based 
approach in deliverable D4.5 (Kaszko et al., 2021). The SBO case was used to compare the 
methods, and a summary is presented here. The basic approach and assumptions for the 
external hazard integration are listed here: 

 Earthquake and flooding were chosen as the external hazard events of interest. 

 Basic event and fault trees for the SBO and SCD_11 were used to develop seismic 
and flooding hazard trees. The basic fault trees would correspond to a random failure 
event, while the hazard trees would represent the failure probability induced by hazard 
events. 

 If the equipment is flooded, it is assumed to have failed completely. This also implies 
that flooded equipment cannot be damaged by earthquakes and hence, these 
components and associated CCF events would not feature in the seismic tree. 

The total failure probability of failure including multiple hazards can be obtained from a general 
formula: 

 
𝑃 = 𝑃(𝐹𝑎𝑖𝑙𝑢𝑟𝑒|𝑁𝑜𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐻𝑎𝑧𝑎𝑟𝑑)𝑃(𝑁𝑜𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐻𝑎𝑧𝑎𝑟𝑑) + 

𝑃(𝐹𝑎𝑖𝑙𝑢𝑟𝑒|𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐻𝑎𝑧𝑎𝑟𝑑)𝑃(𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐻𝑎𝑧𝑎𝑟𝑑) 
Eq. (9) 

   

The comparison of the two methods and their advantages and disadvantages were presented 
in D4.5.  

When all the models are created and appropriate modifications are made, this formula can be 
specified for the considered case, as (Kaszko et al., 2021): 

 𝑃 = 𝑃𝑏𝑎𝑠𝑖𝑐𝑃𝑁𝐻 + ∑(𝑃𝐹𝑙,𝐸𝑄 + 𝑃𝐸𝑄,𝐹𝑙)

𝑛

𝑖=1

+ ∑ 𝑃𝐻

𝑚

𝑖=1

 Eq. (10) 

   

Where, 𝑛 is the number of flooding intervals, 𝑚 is the number of other hazards 𝑃𝑏𝑎𝑠𝑖𝑐 is the 
probability of failure of a basic model, 𝑃𝑁𝐻 is the probability of no external hazards, 𝑃𝐹𝑙,𝐸𝑄 is 

the probability of failure only due to flooding (in case of the occurrence of flooding and 
earthquake), 𝑃𝐸𝑄,𝐹𝑙 is the probability of failure only due to earthquake (in case of the occurrence 

of earthquake and flooding), and 𝑃𝐻 is the probability of failure due to other possible hazards 
(including single flooding or earthquake). This means that the first term describes probability 
of the failure in case of no occurrence of external hazards. The second term assumes 
occurrence of flooding and earthquake as multiple-hazards. The third term includes other 
possible hazards such as single hazards (e.g. Flooding, Earthquake etc.) and can include other 
multiple-hazards. 

Further details of the developed PSA model, the results and comparison with BNs is presented 
in D4.5 (Kaszko et al., 2021). 
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5.2 BN-based approach 

The integration of external hazards with the SBO BN, based on the above assumptions, is first 
presented to demonstrate the BN approach and understand some differences with the existing 
PSA approach. Later other subnetworks are included to present the overall case, as these 
subnetworks (the flood defence BN and human reliability BN) were not represented in the 
existing PSA model in deliverable D4.5. Accordingly, the hazard data used in this 
demonstration of multi-hazard integration with the SBO BN is exactly same as what was used 
in D4.5 in the existing PSA approach (Kaszko et al., 2021). The actual flooding and earthquake 
data from Mülheim-Kärlich, Germany presented in D1.6 (Daniell et al., 2019) is used in the 
next section where all the subnetworks of interest are integrated. 

The existing PSA model employs separate hazard trees for the different hazards – earthquake 
and flooding. Within flooding, separate trees are used for each intensity (no flooding, flooding 
between 0.01-4m and 4+m) based on the different assumptions associated with each of them. 
Within the seismic tree, three different hazard curves are used depending on the multi-hazard 
interaction between different the three flooding levels and earthquake PGA (Figure 13). The 
frequency of the PGA at 0.9-1.0+g is high due to the inclusion of higher PGAs in this bin. The 
hazard data in this section is only for demonstration, chosen to exactly match the data used in 
D4.5 (Kaszko et al., 2021). This logical structure from the existing PSA approach is modelled 
in two different ways using BNs to highlight the characteristics, possibilities and limitations of 
the BN method. 

 

Figure 13: Multi-hazard histograms used in discretized conditional probability distributions of PGA given flooding 
level (or in subnetworks corresponding to different flooding levels) 

5.2.1 Object-Oriented Bayesian network approach 

Firstly, a similar logical structure is reproduced using BNs, wherein different subnetworks are 
used to model each corresponding hazard tree in the existing PSA model. The logic of the 
event trees is then integrated in the main BN model (Figure 14), featuring the interactions 
between subnetworks. This demonstrates both the possibility of equivalent implementation in 
BNs as well as the use of object oriented BNs (or OOBNs) via subnetworks. 

The workings of OOBNs and their features can vary significantly depending on the software 
programs used and the inference algorithms implemented within them. In this study, we use 
AgenaRisk® to demonstrate the use of subnetworks (or ‘risk objects’ as termed by the 
program), which allow the separation of various hazard cases, similar to the existing PSA 
approach using event and fault trees. The interaction between risk objects is defined in the 
main model and is made possible by the use of “input nodes” and “output nodes” within the 
risk objects. Input nodes receive the marginal distribution calculated from the corresponding 
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output nodes in ancestral risk objects. A key point to note when using risk objects in 
AgenaRisk® is that both predictive and diagnostic inference is possible within risk objects, 
whereas only predictive inference can be performed between risk objects. In other words, 
between risk objects, marginal distributions from one ancestral risk object are sequentially 
passed to a connected, descendant risk object. 

In Figure 14, each white box indicates a separate subnetwork (corresponding to a separate fault 
tree or event tree sequence in the existing PSA approach). The blue and green boxes are input 
and output nodes respectively. It can be seen how the output node from each subnetwork 
connects to an input node in another subnetwork. The final subnetwork “F. Sum All” provides 
the overall multi-hazard probability, P, as in Eq. (10). This main BN model involving 
subnetworks produces the exact same probabilities as the existing PSA approach, while 
providing the advantages of using BNs (for e.g. Bayesian updating, diagnostic inference, see 
D3.2 (Mohan et al., 2021)). However, as mentioned earlier, a limitation of using OOBNs in 
AgenaRisk® is that diagnostic inference is not possible between subnetworks (or risk objects). 

Using this main BN model, the probabilities of SBO for different flooding cases are calculated 
and presented in Table 1. The results are identical to the point estimate probabilities obtained 
from the existed PSA model in D4.5 (Kaszko et al., 2021), confirming the equivalence of the 
BN with the existing PSA approach. The results from the earthquake trees (or subnetworks) 
may differ but are not linked to any methodological factors associated with fault trees or BNs 
and hence, are not important to the scope of this study. The differences are merely due to the 
fragility models used in the existing PSA approach and associated uncertainty analyses, which 
if required, may be reproduced within BNs. 

 

Figure 14: Main BN model, involving various subnetworks corresponding to hazard trees in the existing PSA 
approach 

Table 1: SBO failure probabilities for different floodings 

 Name Point Est. Prob. 

1 SBO failure – Flooding+Earthquake 0.01-4m 2.40E-05 

2 SBO failure – Flooding+Earthquake 4+m 2.15E-06 

3 SBO failure – Flooding 0.01-4m 2.69E-05 

4 SBO failure – Flooding 4+m 2.34E-06 

5 SBO failure – No flooding 2.21E-04 
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5.2.2 Unified BN approach 

Alternately, the logical structure achieved using several fault trees and event trees can be 
modelled within a unified BN (see Figure 15) to fully take advantage of diagnostic capabilities 
across various hazard scenarios. It can be seen that with the addition of only 2 hazard nodes 
and 3 component failure nodes, the SBO BN in Figure 8 is transformed to include all multi-
hazard scenarios previously modelled in several hazard trees (or subnetworks). In fact, the 3 
failure nodes can also be integrated into existing component (random) failure nodes in the 
SBO BN, but separating hazard damage from other random failures can be useful for 
diagnostics. It is possible to include all hazard scenarios in a single, unified BN because the 
logical interactions can be included within conditional probability tables (CPTs) of the nodes of 
the BN, rather than using several subnetworks. For example, Figure 16 shows the CPTs at 
“Flood” and the “Earthquake PGA” node. The different levels of flooding, for which individual 
BNs were used as subnetworks (or individual fault trees in the existing PSA approach), are 
now included as multiple states of the “Flood” node, with associated probabilities of 
occurrence. Hence, dependencies between hazard nodes and their interaction with 
components (fragilities) can be modelled within the conditional probability relationships at the 
nodes. This represents a more direct modelling of dependence between variables and ensures 
all dependencies are considered without missing any interactions while transitioning between 
fault trees and event trees. The possibility of using multi-state variables in BNs allows the 
reduction of several fault and event trees to a single BN. Since all hazard scenarios are 
considered within a single BN, the top event directly yields the overall probability of SBO – 
probability, P in Eq. (10). Within the unified BN in Figure 15, the dashed edges between the 
“Earthquake PGA” node and the component damage nodes indicate that there are some 
hidden nodes. These nodes are hidden since they are not events of interest for the scenario, 
but merely nodes to carry out arithmetic calculations for component fragility, given earthquake 
PGA (based on Section 3.3.2). Alternatively, the fragility functions can be applied outside the 
BN and input into the damage state nodes as CPTs. The computational differences between 
these two types of fragility calculations is discussed later in Section 5.5. 

 

 

Figure 15: Unified BN model including all multi-hazard scenarios 
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(a) 

 

(b) 

Figure 16: Conditional probability distributions at (a) “Flood” node and (b) “Earthquake PGA” node in the unified 
BN 

The multi-hazard impact on the probability of the SBO can be calculated via forward (or 
predictive) inference in the BN. Figure 17 shows the probability of SBO occurrence during 
flooding and earthquake events, for different values PGA. Next, various PGA values are 
applied as evidence to the BN, and using Bayesian updating, corresponding probabilities of 
SBO occurrence are obtained from the network. Figure 18 shows the variation of SBO 
probability conditional on various PGA values. The values in Table 1 can be reproduced, as 
well, with the unified BN by setting evidence of no earthquake (PGA = 0) and required flooding 
level, demonstrating the equivalence with the OOBN and existing PSA methods. 
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Figure 17: Probability of SBO during combined flooding and earthquake events, calculated using the unified BN 

 

Figure 18: Conditional probability of SBO given Earthquake PGA, calculated using the unified BN 

As part of sensitivity and importance analysis, the posterior probability of all nodes in the BN 
is calculated by setting evidence of top event occurrence (SBO = “True”). Posterior 
probabilities can be used both for diagnosis but as well for importance measures. Figure 19 
shows the impact of various node states on the probability of top event occurrence, as a 
measure of sensitivity. Figure 19a shows the tornado plot for CCF events, showing their impact 
on SBO occurrence. Figure 19b presents the same for basic events and the hazard nodes. For 
instance, the P(SBO = ”True”) varies from less than 10E-03 when P(DFR_All = “False”), to 
0.995 when P(DFR_All = “True”) while no evidence is provided to any other node in the BN, 
where DFR_All represents the CCF event involving the “failure to run”, of all four EDGs. For 
continuous (or discretised) nodes such as earthquake PGA, the upper and lower percentile 
indicate the probability of SBO at 25th and 75th percentile values of PGA. 
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(a) 
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(b) 

Figure 19: (a) Sensitivity of SBO event to the different states of CCF event nodes; (b) Sensitivity of SBO event to 
states of basic event and hazard nodes 

The various advantages and disadvantages of BNs compared to existing PSA approach using 
event and fault trees were summarised in deliverable D4.5 (Kaszko et al., 2021). Those 
pertaining to multi-risk integration, specifically based on the above demonstration using the 
SBO BN, are summarised in Section 5.6. 

5.3 Integration of subnetworks 

In the previous section, the SBO BN was used to demonstrate the basic principles of multi-risk 
integration using BNs and the two main possibilities – a unified BN or OOBNs. Now other 
subnetworks - SCD_11, the flood defence BN and the human reliability BN are integrated with 
the SBO BN. The integration is performed using features of both the unified BN approach as 
well as the OOBN approach in the interest of demonstration of their combined applicability. 
The subnetwork pertaining to hazard-fragility interaction is not explicitly integrated here due to 
the absence of multiple intensity measures or vector-valued fragilities in this example accident 
scenario. Nevertheless, the principles of multi-hazard integration were already demonstrated 
in that subnetwork as it inherently included hazard impact and dependence between intensity 
measures (Gehl and Rohmer, 2018; Mohan et al., 2021). 



NARSIS Project (Grant Agreement No. 755439) D3.4 

- 31 - 

During integration of the chosen subnetworks, hazard impact is assumed to be limited to the 
following: 

(i) The flood defence dike 
(ii) All applicable components in the SBO BN – EDGs (including CCF events), busbars 

and the instrumentation & control (I&C) system 
(iii) Relevant PSFs in the human reliability BN – “Available Time” and “Stressors”; the 

HEP of operator action calculated from the human reliability BN feeds into the 
SCD_11 network 

The hazard impact on several components in the SCD_11 network is not considered as it adds 
little value to the demonstration of the risk integration procedure, but merely adds further 
computational load to the BN calculations. These computational challenges associated with 
BNs are, of course, a limitation to BN use in PSA, which is discussed later in Section 5.5. 

Below, the hazards information used and their interaction with each subnetwork is described 
separately. Eventually, their integration, using the unified BN approach, is presented. Although 
the risk integration methodology presented earlier in Section 3.2 is followed in principle, some 
of the steps and iterations have been internalised within subnetwork development described 
earlier and the hazard integration described below. Hence, the methodology is not explicitly 
applied in a sequential manner here, but the corresponding steps and iterations are indicated 
where they are implicitly implemented. 

5.3.1 Hazard data 

Initially, earthquake, flooding and volcano hazards were considered based on the 
decommissioned site at Mülheim-Kärlich, Germany, as described in deliverable D1.6 (Daniell 
et al., 2019) – corresponding to Step 1 in the BN-based risk integration methodology of Section 
3.2. However, on examination of the hazard probabilities, their dependence, and the SSCs 
involved in the project accident scenario, only earthquake and flooding events were considered 
as relevant hazards (as in deliverable D4.5 in the existing PSA approach). Such elimination of 
hazards can, in reality, also be decided in Step 5 of the risk integration method, where the 
inconsequential hazard(s) would be ignored in the subsequent iteration(s) of the BN. 

It is assumed that earthquake is followed by flooding, where the ground motion occurs within 
a period of 0-7 days when the flood water level lasts, after which the hazards are assumed to 
become independent (no concurrence), as the flood water level recedes. 

Flooding 

The flooding data shown in Table 2 is obtained based on deliverable D1.6 (Daniell et al., 2019). 

 

Table 2: Flooding hazard - probability distribution 

Flooding Height (m) Annual Probability of Occurrence 

0.0 - 0.01 (~ no flood) 8.99E-01 

0.01 - 0.5 6.26E-02 

0.5 - 1.0 1.22E-02 

1.0 - 2.0 1.56E-02 

2.0 - 3.0 4.81E-03 

3.0 - 4.0 3.36E-03 

4.0 - 5.0 1.88E-03 

> 5.0  5.00E-04 
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Earthquake 

The earthquake data used herein is obtained from deliverable D1.6 (Daniell et al., 2019). Both 
the independent hazard curve as well as the earthquake dependence with flooding are 
presented. At the “earthquake PGA” node of the integrated BN, the hazard curve is discretised 
evenly at a bin width of 0.05g, except 0.00-0.15g as this range is considered to be 
inconsequential based on the fragility of components. Such filtering of the hazard data can 
also be performed using the BN, which would comprise Step 5 of the risk integration 
framework, which would then be followed by a further iteration of the BN with a more efficient 
discretisation of the hazard curve. The effect of discretisation on hazard data is a key aspect 
in the use of BNs that is, however, not investigated in this study.  

Figure 20 presents the multi-hazard data for flood and earthquake events used in the unified 
BN. 

 

Figure 20: Combined hazard curves for earthquake and flooding events 

5.3.2 Hazard impact on flood defence BN 

As in the flood defence BN, the dike is assumed to be 5 m in height, higher than the lowest 
EDG at 4 m from the datum. The topography of the site is assumed to be flat between the dike 
and the EDG building. Failure of the flood defence dike can be attributed to two main causes: 
random failure and hazard induced failure. Of course, the flood defence fails if either case were 
to occur and can lead to internal flooding. The flood defence subnetwork yields the random 
failure probability via the distribution of factor of safety, where a factor of safety of less than 
1.20 is assumed to cause dike failure based on a 95% reliability estimate. The hazard induced 
failure is assumed to possibly occur via three modes – overtopping due to flooding, piping 
failure due to flooding and global stability failure due to the joint impact of flooding and 
earthquake. The fragility functions used for the piping and global stability failure modes are 
given in Eq. (11) and are presented in Table 3:  

 𝐹𝑅(𝑥) = Φ [
ln (𝐼𝑀 𝑚𝑅)⁄

𝛽𝑅
] Eq. (11) 

where, Φ[. ] is the standard normal probability integral, 𝐼𝑀 is the intensity measure for the 
respective hazard, 𝑚𝑅 is the median fragility, and 𝛽𝑅 =  𝜎𝑙𝑛𝑅 is the logarithmic standard 
deviation (or dispersion) of the fragility. 
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Overtopping failure occurs, simply, if the flooding level is higher than 5 m (the height of the 
dike). Since all three fragility functions are based on a lognormal distribution, the fragility 
calculation and damage state nodes are modelled using the method described in Section 3.3.2. 
Figure 21 shows the part of the unified BN that pertains to the flood defence dike. The dashed 
lines indicate hidden nodes that were used merely for arithmetic calculations associated with 
the fragility functions. 

Table 3: Single and multi-hazard fragility models for piping and global stability failure modes 

Dike Failure Mode Water Level Range (m) 𝑰𝑴 𝒎𝑹 𝜷𝑹 

Piping (after Bachmann et al. (2013)) -- Water Level 3.48 0.22 

Global Stability (after Tyagunov et al. (2018)) 

WL (0-1m) 

PGA 

0.1182 0.2786 

WL (1-2m) 0.1587 0.2778 

WL (2-3m) 0.1899 0.2783 

WL (3-4m) 0.2209 0.2797 

WL (4-5m) 0.2620 0.2775 

 

Figure 21: Hazard integration with flood defence BN 

5.3.3 Hazard impact on SBO BN 

Hazard impact on the SBO BN is exactly as the unified BN in Section 5.2.2, excepting two 
factors: 

(i) A node for the internal flooding level is introduced which is dependent on the dike damage 
state and external flooding levels. The three states of the internal flooding node are similar 
to Section 5 – No flooding (0-0.01m), 0.01-4m, 4m +. 

(ii) The external flood levels are divided into 8 states as in Table 2. 

Figure 15 in the previous section depicts the interaction of the hazards with the SBO BN. 

 presents the assumed fragility parameters for the components in the SBO BN (Andersen et 
al., 2013). Since, all three functions are based on the lognormal distribution, the method 
described in Section 3.3.2 is used to model the fragility and damage states of these 
components.  

Figure 15 in the previous section depicts the interaction of the hazards with the SBO BN. 
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5.3.4 Hazard impact on human reliability BN 

For the purposes of demonstration, simplified assumptions are made to integrate the human 
reliability BN within the accident scenario. Two PSFs – “Stressor” and “Available Time” – are 
assumed to be impacted by the occurrence of the hazard. For the purposes of this study, it is 
of little value to study in detail the impact of hazards on PSFs. Instead, it is assumed that if a 
hazard – earthquake ground motion or internal flooding of the plant – were to occur, the PSFs 
would be impacted, irrespective of the intensity of the hazards. Hence, a “hazard occurrence” 
node is introduced which is True when at least one of an earthquake PGA (> 0.15g) or an 
internal flood water level (> 0.01 m) were to occur. The CPTs of the two chosen PSFs based 
on occurrence or non-occurrence of hazards is shown in Table 4 Fragility parameters for components in the SBO 
BN (after Andersen et al. (2013)) 

Component Am βr βu 

EDG(2) 1.5 0.3 0.35 

Busbar 2 0.3 0.35 

I&C System 3 0.35 0.5 

Table 5 and Table 6. 

Table 4 Fragility parameters for components in the SBO BN (after Andersen et al. (2013)) 

Component Am βr βu 

EDG(2) 1.5 0.3 0.35 

Busbar 2 0.3 0.35 

I&C System 3 0.35 0.5 

Table 5 Conditional probability table of the PSF "Available Time" given hazard occurrence 

 Hazard Occurrence 

PSF Rate False True 

R1 0.02 0.20 

R3 0.13 0.40 

R5 0.23 0.30 

R7 0.37 0.08 

R9 0.25 0.02 

Table 6 Conditional probability table of the PSF "Stressor" given hazard occurrence 

 Hazard Occurrence 

PSF Rate False True 

R1 0.02 0.20 

R3 0.25 0.40 

R5 0.34 0.40 

R7 0.34 0.00 

R9 0.05 0.00 

5.3.5 Unified BN for project accident scenario 

The entire SBO BN is comprised in the SCD_11 BN as the SBO event is a precursor to the 
failure of the secondary cool down system. Hence, the SBO BN integrated with hazards can 
directly be transposed into the SCD_11 BN. The flood defence BN is connected to the SBO 
BN via the hazards as well as the “internal flooding” node. Further, the human reliability BN is 
integrated with hazards via the “hazard occurrence” node and the calculated HEP is the 
probability of “Operator failure to start and control EFWS” node being True in the SCD_11 



NARSIS Project (Grant Agreement No. 755439) D3.4 

- 35 - 

network. Hence, the human reliability BN directly fits into the SCD_11 BN. Thus, the 4 
subnetworks – SBO, SCD_11, flood defence and the human reliability BN are all integrated 
with multiple external hazards, under one framework. The accident scenario is completed by 
defining a top event “LOOP_H1” which effectively checks for the joint occurrence of LOOP, 
SBO and SCD_11A (top event of SCD_11 BN). Figure 22 shows the unified BN with top event 
LOOP_H1. From Figure 22, it is evident that the visualisation of large BNs is challenging. The 
relationships between hazards, damage states of SSCs and end events, are no longer 
intelligible.  
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Figure 22: Unified BN integrating subnetworks for project accident scenario 

(vectorised image can be accessed here – download file before viewing): https://drive.google.com/file/d/1jvdrN3mOGcCDt3iqRVac5bJJqxwPueYQ/view) 

 

https://drive.google.com/file/d/1jvdrN3mOGcCDt3iqRVac5bJJqxwPueYQ/view
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5.4 Results 

Table 7 lists the marginal probabilities of the top event of the unified BN (LOOP_H1) as well as 
top events of each of the subnetworks within the unified BN. Also shown, are their marginal 
probabilities without consideration of hazards. The marginal probabilities are not too different, 
as expected as the hazard events are relatively rare. However, if they were to occur, there 
could be a significant rise in top event probabilities as already identified from hazard integration 
with the SBO BN (Figure 18). 

 

Table 7: Marginal probabilities of occurrence of key events before and after multi-risk integration 

Event 

Marginal probability of occurrence 

Before hazard & subnetwork 
integration 

With hazards integrated in 
unified BN 

SBO 2.73 x 10-4 2.78 x 10-4 

SCD_11A 5.38 x 10-4 5.46 x 10-4 

Dike failure 4.26 x 10-2 4.59 x 10-2 

Operator fails to start and 
control EFWS 2.26 x 10-2 2.33 x 10-2 

LOOP_H1 1.25 x 10-7 1.32 x 10-7 

 

5.4.1 Sensitivity analysis 

Sensitivity analysis can be performed in several ways using BNs including global sensitivity 
methods developed as part of the NARSIS project (Rohmer and Gehl, 2020). Herein, we 
simply use the diagnostic inference capabilities of the BN. Evidence of occurrence and non-
occurrence of top event is provided to the BN and posterior probabilities of other events in the 
network are calculated using Bayesian inference. Response of top event probability, of the 
SBO BN, to multiple hazards was presented in Section 5.2.2. Hazard interaction was also 
assumed only for the SBO BN, flood defence BN and the human reliability BN. Hence, the 
focus here, is on the ability to link the top event of the SCD_11 BN (which includes the SBO 
BN) to the hazards, but also to extraneous subnetworks – the flood defence and human 
reliability BNs. 

The variations in posterior distributions of HEP and flood defence failure nodes, based on 
evidence to top event, are shown in Figure 23. Overtopping failure probability is negligible due 
to the relatively very low probability of the flood level exceeding the height of the dike at the 
site. While piping failure is most likely as determined by the fragility functions, the probability 
of global stability failure of the dike undergoes the maximum change. This already provides a 
sense of which aspects of flood defence stability are likely to most affect the top event – a 
deduction that is easily possible because of the association of dike reliability parameters with 
accident states of the NPP, via the unified BN. 
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Figure 23: Posterior probability of flood defence nodes and operator error given evidence of non-occurrence and 
occurrence of LOOP_H1 (top event) 

Figure 23 also shows that the posterior probability of human error changes by almost two orders 
of magnitude, indicating the significant influence of human reliability on plant safety, in this 
scenario. To further understand its impact on the top event, evidence of occurrence and non-
occurrence of operator error was provided to the network to check the posterior probability of 
the top event. If operator error were to happen, the top event probability was calculated to be 
1.57 x 10-7, as compared to 6.61 x 10-7, when the operator action was correctly performed – 
an increase of over 4 times while all other variables in the unified BN remained unchanged. 

Figure 24 shows the sensitivity of HEP to various PSFs in the human subnetwork, prior to 
integration. Change in rating level from PSF R9 (relatively safe) to R1 (relatively unsafe) in the 
“Procedure” and “Experience/Training” PSFs has maximum impact over the probability of 
human error. Based on Section 5.3.4, “Available Time” and “Stressor” are the PSFs most 
impacted by hazard occurrence. With these facts as background, the posterior impact at the 
level of PSFs, to evidence of top event in the unified BN, is examined. Figure 25 shows the 
posterior probability distributions of the eight PSFs in the human reliability BN when evidence 
of non-occurrence (blue bars - safety) and occurrence (red bars - failure) of the top event 
(LOOP_H1) is provided to the unified BN. The change in probabilities of individual rating levels 
within PSFs is relatively minor. However, this change also manifest as a shift between rating 
levels – a degradation of PSFs as probability shifts from R9 (relatively safe) towards R1 
(relatively unsafe). As a result, a significant change in HEP and top event probability is 
possible, even with a relatively minor change in the state of PSFs. 

Thus, the unified BN clearly demonstrates the ability of the BN-based risk model to understand 
dependencies that are typically not considered in design or are not readily obtained from 
existing PSA tools. This is also possible because the top event is linked to various SSCs, 
including input parameters of their individual, BN-based reliability models. 
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Figure 24: Sensitivity of HEP to different PSFs based on the human reliability subnetwork 
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Figure 25: Posterior probability distributions of PSFs in the unified BN, given evidence of non-occurrence and 
occurrence of top event 
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5.5 Challenges 

One significant challenge in the implementation of such unified BNs is the large computational 
load (run-time and/or memory used) due to discretised hazard nodes, detailed uncertainty 
representation of fragility parameters, continuous variables (such as in the flood defence BN) 
or large CPTs due to multi-state variables (such as in the human reliability BN). As a rule of 
thumb, representing continuous variables increases run-time while larger CPTs increase the 
file size of the model and its memory usage. The computational load on the network can 
potentially be eased using the iterative BN-based risk integration methodology described in 
Section 3.2. In the above described integration process for the project accident scenario, such 
removal of inconsequential hazards and dependencies were already done during hazard 
analysis (D1.6 – Daniell et al., 2019). Further, the filtering of less important hazard ranges 
based on fragility parameters was also performed separately. Despite such efforts, the unified 
BN approach is computationally more intensive as seen in Table 8. 

For the SBO BN with hazards, two models were used – discretised and continuous calculation 
of damage states. In the discretised calculation, the CPTs at the damage state nodes are 
calculated externally and input to the node, whereas in the continuous calculation, fragility 
calculations are performed in the BN (as described in Section 3.3.2). While the discretised 
fragility calculation results in a similar run-time as the OOBN, the memory used is close to 4 
times higher. On the other hand, when fragility calculations are performed using continuous 
nodes in the BN, the run-time increases close to 40 times, while the memory used remains 
almost the same when compared to the OOBN. 

The unified BN for the project accident scenario – combining the SBO, SCD_11, flood defence 
and human reliability BNs – resulted in a significantly higher computational load. While the 
memory used increased linearly, the run-time was 44 times slower than the slowest individual 
subnetwork. Performing in-built sensitivity analysis on the desktop version of AgenaRisk® was 
impossible due to the large size of the unified BN model for the project accident scenario. 
Hence, plant-wide application of a unified BN risk model could encounter very high 
computational demands. 

 

Table 8: Computation load for BNs in this study 

Bayesian network reference Run-time (seconds) Maximum Memory used (MB) 

SBO ~1 272 

SBO with hazards – OOBN ~1 272 

SBO with hazards – unified BN (discretised 
fragility calculations) ~1 1024 

SBO with hazards – unified BN (continuous 
fragility calculations as in Section 3.3.2) 39 276 

SCD_11 45 680 

Flood defence 28 524 

Human reliability 4 1088 

Unified BN for project accident scenario 1980 3000 

 

A solution to manage the computational requirements may be to combine the OOBN and 
unified BN approach to integration, where subnetworks are integrated only where necessary 
while other subnetworks remain as separate risk objects. This, of course, needs a thorough 
analysis of dependence across the various SSCs in the NPP and a judicious application of the 
BN method to maximise its advantages. Firstly, all the ET/FTs at an NPP may be converted to 
risk objects using the OOBN approach, to first reproduce the results of existing PSA. Next, 
subnetworks may be integrated using unified BNs as required. While this would not represent 
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a complete solution by modelling every dependence in the NPP, it would still complement and 
improve existing PSA results. Other minor, technical improvements include the use of divorcing 
of discrete nodes where possible. Also, much of the computational time often comes from the 
static discretisation of hazard nodes which impact several SSCs across the risk model. 
Reasonably accurate fitting of parametric distributions to hazard curves can avoid inefficient 
static discretisation of nodes, and instead, take advantage of dynamic discretisation of 
continuous nodes. Similarly, the use of non-parametric BNs can also significantly reduce the 
computational load of large BNs, with the necessary assumption of dependence between 
variables following the Gaussian copula (Morales-Nápoles and Steenbergen, 2015). In some 
cases, the diagnostic inference abilities in the OOBN approach may be improved by adopting 
methods as in Koller and Pfeffer (1997) or Neil et al. (2000). However, these methods are 
intended for encapsulation of variables within an object and the repeated use of model 
fragments in different contexts, both of which were not relevant to the example in this study.  

Another challenge may be the large amount of time and workload involved in eliciting expert 
judgements regarding various probability distributions of variables. A significant and dedicated 
effort would be needed to transform existing PSA to BNs and improve it by eliciting expert 
judgements where needed. Again, the risk analyst must determine areas where there is value 
in such an exercise. The sensitivity results from the BN can be useful in this regard. 

While computational demands are high for BNs, equivalent comparisons have not been made 
with existing PSA tools in this project. An accurate comparison would shed more light on the 
effectiveness of BNs in PSA in terms of computational feasibility. 

5.6 Summary of findings 

The general advantages and disadvantages of BNs as compared to FTs were discussed in 
detail deliverable D3.2 (Mohan et al., 2021) and D4.5 (Kaszko et al., 2021). Here, we 
summarise the findings from this study regarding the use of BNs for multi-risk integration. 

 A stepwise, iterative multi-risk framework for risk integration using BNs was proposed. 
The methodology was applied to the project accident scenario of LOOP-induced SBO 
and SCD_11 events. 

 Technical and human aspects were successfully integrated in a multi-hazard scenario 
using BNs. Multiple hazards, surrogate models for systems, human reliability methods 
and existing PSA information were all integrated under one risk framework, allowing 
for understanding of various dependencies. 

 BNs can directly incorporate continuous random variables without the need for 
additional modifications as in the case of fault trees. Also, it is easy to integrate expert 
judgement in BNs. These advantages, demonstrated in the subnetworks, are also 
carried over into the unified BN. 

 As more complex systems are modelled, with increased common cause effects, BNs 
can grow in size, making visualisation and computation challenging. Dependencies 
between components can become visually indecipherable. 

5.6.1 Unified BN vs. OOBN 

Utilising the advantages of BNs 

 Diagnostic inference and Bayesian updating are inherent advantages of BNs. In 
OOBNs, these features are limited to within risk objects and cannot be performed 
across objects. Thus, unified BNs better preserve some key advantages of BNs over 
FTs. 

 The unified integration of subnetworks with external hazards can help understand links 
between the top event of interest and various SSCs in the NPP, and reveal unforeseen 
dependencies. While using many hazard trees as in OOBNs, dependencies may be 
missed between different variables across scenarios. Using a unified BN could possibly 
limit such omissions. 
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Using existing PSA information 

 ET and FTs in existing PSA can be equivalently modelled as OOBNs, allowing for easy 
transition with parallel application as opposed to the unified BN approach, where the 
logical interactions of event trees are housed in CPTs of hazard nodes. Hence, OOBNs 
can also be more easily implemented for plant-wide applications. 
 

Computational load 

 Multi-hazard integration under a unified BN, with several variables influenced by 
hazards and complex subnetworks, can result in significant computational challenges. 

 One solution to manage the computational requirements may be to combine the OOBN 
and unified BN approach to integration, where subnetworks are integrated only where 
necessary while other subnetworks remain as separate risk objects. 

5.7 Recommendations for further research 

 Dynamic BNs is a type of BN that models relationships between variables over adjacent 
time steps (Jensen and Nielsen, 2007). Dynamic BNs were not considered in this study 
and must be explored as their use can provide significant improvements in PSA. 

 The use of BNs in accident diagnosis and management should be explored further. 

 Event/Fault trees and BNs can be implemented within the same software tool to allow 
for transition and parallel use, wherever possible. 

 The disproportionately high number of discrete nodes in the BNs considered in this 
study meant non-parametric BNs were not chosen within this project. If extensive 
examination of all system events/variables can be done to represent most variables as 
continuous, non-parametric BNs, with necessary assumptions regarding the type of 
copula dependence, can be a more computationally efficient alternative (Hanea et al., 
2015). 

 Inference algorithms for object-oriented BNs can be improved to allow for diagnostic 
capabilities across BN objects, in a computationally feasible manner. 

 While computational challenges were quoted as a challenge to BN implementation, an 
exact comparison with existing PSA tools was not possible in this project. An accurate 
comparison of computational time and cost will be valuable to the PSA practice. 
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