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1 Executive Summary 

The present contribution aims at developing a methodology for characterizing the probabilistic 
behaviour of a critical Nuclear Power Plant (NPP) component (e.g., piping device) submitted 
to two kinds of sequential loading: (i) a preliminary High-Cycle Fatigue (HCF) thermo-
mechanical loading, considered for nominal lifetime calculation, and (ii) a damaging seismic 
accidental ground motion. The main challenge of this work resides in gathering the probabilistic 
modelling tools, classically used for HCF- and seismic- risk assessment, in a unifying 
framework with the objective of deriving the so-called multi-input or vector-valued fragility 
curves describing the conditional probability (called probability of failure) that one of the 
mechanical states of the studied structure exceeds a given threshold value and this, as a 
function of both (i) the duration of the nominal phase at the beginning of the accident and (ii) 
the intensity of the likely seismic input.  

In this report, we describes the methodology derived for simulating the damaging process of 
an elastoplastic component submitted to a seismic event consecutive to a preliminary HCF 
nominal loading. A unifying Low-Cycle Fatigue (LCF)/HCF damage description is proposed 
and an innovative Model Order Reduction (MOR)-based strategy is defined for an efficient 
simulation of the multiple load cases defining the seismic scenario. All the material parameters 
associated to Thyssen (THY) AISI 304L stainless-steel required for conducting this analysis 
are identified from experimental results in this contribution.  
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2 Introduction 

The European H2020 research project NARSIS focuses on the development of methodologies 
for Probabilistic Safety Assessment (PSA) of NPPs against external natural hazards, in the 
light of the 2011 Fukushima Dai-ichi nuclear accident, which has stressed the necessity of 
conducting multi-factorial risk analyses for NPPs. In this contribution, both nominal thermal 
loading and accidental seismic risk are considered in a consecutive manner. 

The component proposed for study in this deliverable is a primary-circuit piping element made 
of 304L grade austenetic Stainless-Steel (SS) subjected to both HCF thermomechanical 
loading and seismic risk (see Fig. 1).  

 

 

Fig. 1: Primary circuit piping element under study - Presence of SS 304L grade in a NPP reactor (from [Poulain, 
2015]). 

Associated uncertainties, especially regarding the load conditions are huge. Indeed, when 
considering seismic events, neither the time of occurrence nor the characteristics of the 
potential seismic input are known. Under nominal operating conditions, the system is brought 
to endure up to millions of load cycles, which exact number is of course unknown, especially 
knowing that this one might be conditioned by the occurrence of an earthquake. In other words, 
none of the preliminary nominal thermo-mechanical phase, during which the system 
undergoes fatigue phenomena, nor external seismic motion input are known in a deterministic 
manner, which stresses the importance of resorting to probabilistic approaches. Moreover, the 
material properties themselves are also affected by uncertainties. Considering the large 
number of simulations required for taking those uncertainties into account for safety analysis 
purposes, it is thus necessary to resort to a numerically attractive strategy capable of handling 
different cumulative damaging processes. 

Regarding fatigue phenomena, several regimes may be classically distinguished, depending 
on the load profile and expected number of cycles to rupture, denoted NR. Low-Cycle Fatigue 
(LCF) is considered when structures are submitted to heavy load cycles, which induce 
irreversible (plastic) strains at small or large scale, giving rise to damage up to crack initiation 

and propagation. The number of cycles to failure for LCF applications is generally low (𝑁𝑅 <
104). High-Cycle Fatigue (HCF) in turn is considered when the load cycles induce stresses 
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close to, but below engineering yield stress, so that the number of cycles to initiate cracks at 

meso-scale is ‘higher’ (classically 𝑁𝑅 > 10
5). The plastic strain is usually not measurable on a 

meso-scale but dissipation exists on a micro-scale precisely inducing the damage 
phenomenon.  

Regarding HCF, for a given material, the key reference-data are contained in the Wöhler 
curves (see e.g. [Lee et al. 2011, Pedersen, 2018] or [Lemaitre and Desmorat, 2005, chap.6] 
for an introduction). These curves are obtained experimentally after submitting a given 
specimen to a, often uniaxial, imposed sinusoidal loading in terms of stress or strain. These 
tests are conducted on several samples of the same specimen to account for variability as 
illustrated in Fig. 2.  

 

Fig. 2: Wöhler curves obtained for AISI 304L (THY) steel grade - Experimental data gathered from [Vincent et al., 
2012, Colin et al., 2011] and collected in a single plot. 

 

Different configurations are considered for assessing the effect of the load-amplitude ∆𝜎 and 

mean stress �̅� on the observed number 𝑁𝑅 of cycles before rupture. The latter can be 
described symbolically under the form: 

𝑁𝑅 = 𝒲(∆𝜎, �̅�; 𝑙𝐶) + 𝑤 (1) 

introducing the random variable 𝑤, whose log10 distribution is generally assumed to be 

Gaussian, and a nonlinear function 𝒲 parameterized by a failure criterion 𝑙𝐶. Please note that 
Wöhler curves characterize the fatigue resistance of materials, but from a macro-scale point 

of view. The failure criterion 𝑙𝐶 is generally associated to a characteristic ‘unacceptable’ crack 
length at the macro-scale. Of course, this characteristic length 𝑙𝐶, or any other criterion, is 
material-dependent but might also vary depending on the application (automotive, aeronautics, 
military application, nuclear safety, etc. where tolerances may be different). From 𝑁𝑅, a first 
definition of damage 𝑑 can be expressed as a lifetime ratio, considering that the specimen has 

been submitted to a current number 𝑁 of load cycles: 

𝑑 =
𝑁

𝑁𝑅
 (2) 

For lifetime evaluation of specimens submitted to general not-necessary periodical load 

profiles 𝜎(𝑡), one relies on cycle counting methods such as rainflow count [see e.g. [Lee and 

Tjhung, 2011]) for establishing the number of cycles 𝑁(𝑖) performed at a given amplitude/mean 
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stress range (∆𝜎(𝑖), �̅�(𝑖)). From the different regimes (𝑖) characterized in a reference Wöhler 

curve, one can access to the 𝑁𝑅
(𝑖)

 and then estimate the associated damage as 𝑑(𝑖) =

𝑁(𝑖) 𝑁𝑅
(𝑖)

⁄ . Final damage (interpreted as a lifetime ratio) can then be obtained using linear or 

nonlinear cumulative laws [Chaboche and Lesne, 1988; Dang Van and Paradopoulos, 1999; 
Lemaitre et al., 2009, Lee et al., 2011]. 

Regarding LCF, the damage state associated to a given load pattern is generally evaluated in 
the continuum damage mechanics framework. When isotropic damage is considered [Lemaitre 
and Desmorat, 2005], the scalar damage variable, that will be denoted 𝐷 in this contribution, 
describes a density of micro-cracks in a Reference Elementary Volume (REV) in such a 

manner that the effective stress tensor �̃� writes: 

�̃� =
𝝈

(1 − 𝐷)
 (3) 

Damage evolution is governed by plasticity and described by e.g., Lemaitre's law up to critical 

value 𝐷𝐶 where failure is supposed to occur. Many lifetime predictions have been computed 
using such damage description in various fields of applications (automotive, aerospace, civil 
engineering, etc.), involving different kinds of materials (metallic alloys but also concrete) and 
this, using isotropic or anisotropic damage description. Simulation durations can be long for 
industrial applications, especially when parametric studies are to be considered. For the 
purpose of LCF predictions, many developments involving the LATIN-PGD methodology have 
been derived since its introduction in the eighties [Ladevèze, 1985]. The LArge-Time 
INcrement method (LATIN) is a non time-incremental iterative strategy developed for 
computing solutions of nonlinear problems in mechanics in a sequence of so-called linear and 
nonlinear stages. The method relies on a low rank approximation called Proper Generalized 
Decomposition (PGD), sometimes referred to as Model Order Reduction (MOR) technique, for 
solving the linear stages in a computationally attractive manner. The LATIN methodology has 
been applied in various fields including continuum damage mechanics for fatigue prediction 
[Cognard and Ladevèze, 1993, Arzt and Ladevèze, 1994]. Most recent developments for LCF 
[Alameddin et al., 2017; Bhattacharyya et al., 2018a, Bhattacharyya et al., 2018b, 
Bhattacharyya et al., 2019] proposed a first implementation of the PGD for these problems to 
enable faster resolution. For earthquake engineering purpose, a first application of the LATIN-
PGD methodology has been proposed during the doctoral work of Sebastian Rodriguez-Iturra 
(NARSIS WP4). In addition to adapting the general LATIN-PGD resolution to the framework of 
low frequency dynamics, an efficient time multi-scale strategy was derived to further improve 
the performance of the algorithm during the linear stage. This work will also rely on the 
numerical efficiency of the MOR-based LATIN-PGD framework for computing the LCF seismic 
response of an elastoplastic piping component. 

Indeed, in this contribution, the objective is to evaluate the damage state of a metallic piping 
element submitted to a preliminary HCF loading of thermal origin followed by an imposed 
seismic ground motion. The study of the preliminary thermal phase will be conducted using 
HCF approaches involving lifetime ratio damage description (2) and Wöhler curves 
interpolation based methods. The seismic response of the piping element, in turn, will be 
computed under LCF assumption and in the continuum damage mechanics framework using 

damage description (3). Let us stress that the damage pattern 𝑑(𝑥𝑔, 𝑡𝑆) at each Gauss point 

of the discretized model caused by the preliminary thermal loading is an input of the seismic 

problem at time 𝑡𝑆 of occurrence of the ground motion (see Fig. 4). A particular attention must 
be paid for harmonizing the two currently used damage descriptions 𝑑 (HCF) and 𝐷 (LCF). 
Fig. 3 gives an illustration of the bijective mapping between d and D that is assumed and 
modeled in this work. 
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Fig. 3: Two damage descriptions - Micro-cracks density D vs. lifetime ratio d. The values in m correspond to 
characteristic length of cracks for different damage states. Colored lines represent the bijective mapping proposed 

for relating the two descriptions: D = Dc d. 

We have chosen to focus on AISI austenetic 304L stainless steel (SS) because it is mostly 
used in the nuclear industry (see Fig. 1) and one of the objective of this deliverable is to identify 
all the material parameters required for conducting the combined HCF/LCF risk analysis from 
experimental references. 

In this work, characteristics of Thyssen (THY) 304L SS grade is considered (see Table 1 for 
chemical composition). 

 

Table 1: Chemical composition of the THY AISI 304L austenitic SS (in % mass), from [Vincent et al., 2012]. 

Name C Mn Si S P Ni Cr Mo Cu N Fe 

THY 0.023 1.13 0.49 0.004 0.024 10.1 18.5 0.09 0.1 0.028 Bal. 

 

Despite numerous requests to the various actors of the NARSIS project, no experimental data 
on 304L SS was provided and only open-access references, as collected in Tab. 2, could have 
been considered as reference for identification. More reliable material parameters values could 
have possibly been obtained if a broader and richer experimental database could have been 
consulted. However, such experimental references was sufficient for tuning LCF model and 
HCF charts with satisfying predictability capabilities (to a certain extent), which was one of the 
objectives of present work. 

Hence, the objectives of the preliminary work presented in this contribution consist in: 

(O1) identifying the parameters contained in vector 𝜽 describing the Wöhler charts 

∆𝜎 2⁄ = 𝒲−1(𝑁𝑅; �̅�, 𝜽) from experimental data (see Fig. 2); 
(O2) identifying the material parameters contained in vector 𝜼 of a damageable elasto-

plastic model from reference experimental tests [𝑇, 𝐶10, 𝐶1, 𝐶2] collected in Table 2; 
(O3) deriving a rigorous methodology for handling preliminary HCF fatigue of thermal 

origin followed by dynamical seismic loading. 
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Table 2: Experimental references considered for identification of the THY 304L SS material parameters. 

Designation Test description Refs. 

[𝑇]  Uniaxial tension test [Kweon et al., 2021] 

[𝐶10] Uniaxial cyclic test (10 cycles) [Kpodekon et al., 2009] 

[𝐶1] LCF test – Δ휀 control - 𝑁𝑅 = 221 [Colin et al., 2011] 

[𝐶2] LCF test – Δ휀 control – 𝑁𝑅 = 975 [Colin et al., 2011] 

[−] HCF tests (see Fig. 2) [Vincent et al., 2012, Colin et al., 2011] 

 

Fig. 4 gives a graphical outline of this contribution, which is structured in order to detail how 
the above-mentioned objectives are met.  

 

 

Fig. 4: Graphical outline of the present report. 

 

Thus, section 3 is dedicated to the evaluation of the damage pattern 𝑑(𝑥𝑔, 𝑡𝑆) produced by the 

HCF thermal loading. This field has to be evaluated for each Gauss point 𝑥𝑔 of a given Finite-

Element (FE) model, at time 𝑡𝑆 when a potential earthquake occurs. Time of occurrence 𝑡𝑆 is 
directly related to the number of cycles endured during the nominal phase. The parameters 𝜽 

describing the Wöhler curves ∆𝜎 2⁄ = 𝒲−1(𝑁𝑅; �̅�, 𝜽) for uniaxial sinusoidal loading are first 
identified from test results in [Colin et al., 2011, Vincent et al., 2012]. An extension for 
estimating lifetime ratio under sinusoidal triaxial loading from behavior is then proposed; 
several avenues can be considered and are described in section 3. The case of more complex 
non-necessarily sinusoidal loading is also addressed, involving rainflow counting methods and 

further assumptions on the loading itself, leading to the targeted damage  field 𝑑(𝑥𝑔, 𝑡𝑆). 

Seismic analysis in turn, is detailed in section 4. Given the initial HCF damage, the structural 
response of the piping element under study will be evaluated using the LATIN-PGD framework. 
The nonlinear damaging model used for seismic application will be detailed in a rigorous 
thermodynamical framework and associated material parameters will be identified from various 
tests results. A whole family of potential seismic inputs, characterizing a virtual seismic hazard 
scenario, will be defined as inputs of the nonlinear FE damaging model. Section 4 will 
especially highlight why the LATIN-PGD strategy and its reduced bases are particularly 
adapted to the multiple evaluation of similar structures. 

Section 5 will give a synthesis of the main contributions as well as further details on the manner 
the results are collected for building the so-called fragility curves, which aims at computing the 

probability 𝒫(‖𝐷‖∞ ≥ �̅�; 𝑎, �̂�) that the maximum damage state ‖𝐷‖∞ exceeds a given 

threshold �̅� and this as a function of the maximal amplitude 𝑎 of the potential seismic input 

and of the number of preliminary thermal load cycles �̂� endured by the structural element in 
the nominal phase.  

Section 6 finally gives conclusions.  
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3 Thermo-mechanical HCF - Preliminary damage pattern 

In this section a methodology for estimating the damage pattern on a structure submitted to 
triaxial loading is described, using Wöhler curves as experimental reference. A first natural 

definition, see eq. (2), describes damage as lifetime ratio 𝑑 for a given specimen undergoing 
load cycles of known amplitude. The failure of the specimen is considered at the macro-scale 

(apparition of pre-rupture cracks of characteristic length 𝑙𝐶, see Fig. 2) and concerns 
specimens submitted to uniaxial loading. This formulation defines the damage increment per 

cycle 𝛿𝑑 𝛿𝑁⁄  as 1 𝑁𝑅⁄  to yield: 

𝛿𝑑 = [𝒲(∆𝜎, �̅�; 𝜽)⏟        ]−1 
𝑁𝑅

𝛿𝑁 
(4) 

Now integrating this relation on the whole load duration to rupture leads to the definition of 𝑁𝑅  

eq. (1). Subsection 3.1 details the chosen representation for 𝒲 and explains how parameters 
𝜽 are identified. If one now considers, for a block 𝑖 made of 𝑁𝑖 cycles of a multi-level loading, 

with amplitude ∆𝜎𝑖 and mean stress �̅�𝑖, one can write: 

∫ 𝛿𝑑
𝑑𝑖

𝑑𝑖−1

= [𝒲(∆𝜎𝑖, �̅�𝑖; 𝜽)]
−1∫ 𝛿𝑁

𝑁𝑖

0

=
𝑁𝑖

𝑁𝑅
𝑖
 (5) 

to yield, after summation, the well-known Miner's linear rule for accumulation of damage: 

𝑑 =∑
𝑁𝑖

𝑁𝑅
𝑖

𝑖

 (6) 

The application of such cumulative rules from simple sinusoidal uniaxial loading to more 
complex triaxial loading is not straightforward; the proposed answer is described in details in 
subsection 3.3. Subsection 3.4 draws a synthesis of the proposed approach. A first step will 
then consist in predicting the number of cycle to rupture 𝑁𝑅  for given load conditions (∆𝜎, �̅�) 
with ∆𝜎 2⁄ = 𝒲−1(𝑁𝑅; �̅�, 𝜽). This is the purpose of upcoming section 3.1 where different 
descriptions 𝒲 are tested and associated parameters 𝜽 identified. 

3.1 Uniaxial Wöhler curves interpolation 

A first attempt to model the Wöhler relation 𝒲, following the lines of [Chaboche and Lesne, 
1988], is presented. This approach, called Non-Linear Continuous fatigue Damage (NLCD), 
consists in modelling the damage increment per cycle as: 

𝛿𝑑

𝛿𝑁
=
𝜎𝑀 − 𝜎∞(�̅�)

𝜎𝑈 − 𝜎𝑀
[
𝜎𝑀 − �̅�

𝐵0(1 − 𝑏�̅�)
]

𝛽

 (7) 

introducing ultimate tensile stress 𝜎𝑈, three constant parameters 𝑏, 𝛽, 𝐵0 and the fatigue limit 
stress 𝜎∞(�̅�), that can be classically described as an affine function of the mean stress under 
the form: 

𝜎∞(�̅�) = �̅� + 𝜎0
∞(1 − 𝑏�̅�) (8) 

where 𝜎0
∞

 is the fatigue limit under reversed stress conditions (�̅� = 0). Note that the 

denominator 𝐵0(1 − 𝑏�̅�) in eq. (7) is built according to the same affine dependency between 
fatigue limit and mean stress. Integrating (7) for 𝑑 ∈ [0; 1] and 𝑁 ∈ [0;𝑁𝑅] leads to describe 
the number of cycles to rupture as: 

𝑁𝑅 = 𝒲(∆𝜎, �̅�; 𝜽) =  
𝜎𝑈 − 𝜎𝑀

𝜎𝑀 − 𝜎∞(�̅�)
[
𝜎𝑀 − �̅�

𝐵0(1 − 𝑏�̅�)
]

−𝛽

 (9) 

involving the five parameters contained in vector 𝜽 = (𝜎𝑈; 𝜎0
∞; 𝐵0; 𝑏; 𝛽). 
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Using the reference test-data of Table 2 and identifying the parameters in 𝜽 in the non-linear 
least-squares sense leads to the coefficients in Table 3. Experimental points of refs. collected 

in Table 2 and predictions brought by relation (9) for different values of σ̅ are compared on Fig. 
5.  
 

Table 3: NLCD parameters identified from experimental points of refs. collected in Table 2. The comparison 

between predictions 𝒲(∆𝜎, �̅�; 𝜽) and test results for different values of �̅� are given in Fig. 5. 

𝜎𝑈 608 MPa 

σ0
∞ 190 MPa 

𝑏 3.88 x 104 MPa-1 

𝐵0 2.89 x 105 MPa 

𝛽 1.073 

Relative LS error 4.58% 

 

One can notice from Fig. 5 that the relation 𝒲 enables a good reproduction of the HCF 
behavior, whereas some experimental LCF points seem to be above model prediction. Let one 
stress that the relation is expressed under small perturbation assumption, involving classical 
‘engineering stress/engineering strain’. Different coefficients for this relation can be found in 
[Lemaitre et al., 2009, p.342, Tab. 8.3] but seem to be associated to a ‘true-stress/true-strain’ 
description. 
 

 

Fig. 5: Wöhler curves interpolation using the NLCD relation [Chaboche and Lesne, 1988] for AISI 304L (THY) SS 
grade - Experimental points extracted from refs. in Table 2 and associated model predictions for different mean 

stress values (continuous lines). 
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Alternatively, in this contribution, a new empirical law is defined and tested, in order to improve 
the LCF predictions as described hereafter. The relation 𝒲 is expressed using simple 
trigonometric functions and hyperbolic sines: 

∆𝜎

2
= 𝒲−1(𝑁𝑅; �̅�, 𝜽) = 𝐴 tan

−1(−𝜓𝑐(𝑛 − 𝑛0)) + 𝜎0 (10) 

with 𝑛 = log10(𝑁) and: 

𝜓𝑐(𝑥) = {
𝑐 sin(𝑥 𝑐⁄ )

𝑐 sinh−1(𝑥 𝑐⁄ )
 (11) 

The constants 𝐴 and 𝜎0  must satisfy the two ultimate and infinity loading conditions: 

∆𝜎

2
|
𝑁=1

= 𝜎𝑈∗ = 𝜎𝑈 − �̅� 

∆𝜎

2
|
𝑁=∞

= 𝜎∞ − �̅� = σ0
∞(1 − 𝑏�̅�) 

(12)  

Taking those conditions into account leads to: 

∆𝜎

2
= 𝐴[tan−1(−𝜓𝑐(𝑛 − 𝑛0)) − tan

−1(−𝜓𝑐(−𝑛0))] + 𝜎𝑈∗  (13) 

with: 

𝐴 =  
𝜎𝑈 − 𝜎∞(�̅�)

Π 2⁄ + tan−1(−𝜓𝑐(−𝑛0))
 (14) 

and: 

𝜎∞(�̅�) =  �̅� + σ0
∞(1 − 𝑏�̅�) (15) 

Note that relations (13) to (15) involve five parameters contained in vector 𝜽 = (𝜎𝑈; 𝜎0
∞; 𝑛0; 𝑐; 𝑏) 

and can be easily inverted to yield: 

𝑁𝑅 =𝒲(∆𝜎, �̅�; 𝜽) =  10
𝑛0−𝜓𝑐

−1(tan(
∆𝜎 2⁄ − 𝜎𝑈∗

𝐴 )+tan−1(−𝜓𝑐(−𝑛0)))
 

(16) 

Once again, the five parameters are identified by non-linear least squares inversion and are 
collected in Table 4. Fig. 2 compares the predictions 𝒲(∆σ, σ̅; 𝛉) with experimental points of 

refs. collected in Table 2, for different values of σ̅. One can notice that this new empirical law 
behaves better in the LCF range and achieves lower relative error level with the same number 
of parameters. 

 

Table 4: Parameters of the new law proposed for 𝒲 in (16) and identified from experimental points of refs. 

collected in Table 2. The comparison between predictions 𝒲(∆𝜎, �̅�; 𝜽) and test results for different values of �̅� are 
given in Fig. 2. 

𝜎𝑈 608 MPa 

σ0
∞ 187 MPa 

𝑏 3.71 x 104 MPa-1 

𝑐 1.47 

𝑛0 3.07 

Relative LS error 3.77% 
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3.2 Nonlinear cumulative damage law 

As already explained at the beginning of section 3, relations written such as (4) for modelling 
the damage increment 𝛿𝑑 𝛿𝑁⁄  per cycle only enable to recover Miner's linear damage 
accumulation rule which might be too conservative. What the authors advocate in [Chaboche 
and Lesne, 1988] is to include a dependency on 𝑑 in the damage increment as follows: 

𝛿𝑑

𝛿𝑁
= 𝑑𝛼 [

𝜎𝑀 − �̅�

𝑎1 𝛽⁄ 𝐵0(1 − 𝑏�̅�)
]

𝛽

 (17) 

where 𝛼 is a function of the loading such as: 

𝛼 = 1 − 𝑎 〈
𝜎𝑀 − 𝜎∞(�̅�)

𝜎𝑈 − 𝜎𝑀
〉 (18) 

introducing a new scalar 𝑎. No test results were consulted for rigorous experimental 
identification of 𝑎 but values within [0.2; 0.9] seem to be appropriate for AISI 304L SS [Lemaitre 

et al., 2009]. Integrating this last expression for 𝑑 ∈ [0; 1] and 𝑁 ∈ [0;𝑁𝑅] leads to the same 
expression (9) for the number of cycle to failure 𝑁𝑅. However, for periodic loading defined by 

constant (∆𝜎, �̅�), the current damage value 𝑑 after 𝑁 cycles writes: 

𝑑 = (
𝑁

𝑁𝑅
)

1
1−𝛼

 (19) 

and for several blocks containing 𝑁𝑖  cycles of load characteristics (∆𝜎𝑖, �̅�𝑖)𝑖, a non-linear 
cumulative damage rule is obtained: 

𝑑 =∑(
𝑁𝑖

𝑁𝑅
𝑖
)

1
1−𝛼

𝑖

 (20) 

Furthermore, when defining a new damage variable 𝑑∗ using a bijective change of variable 
such that 𝑑∗ = 𝜙(𝑑) and such that 𝜙(0) = 0 and 𝜙(1) = 1, one can define the damage 
increment as: 

𝛿𝑑

𝛿𝑁
=
(𝜙(𝑑))

𝛼

𝑘𝜙′(𝑑)
[

𝜎𝑀 − �̅�

𝑎1 𝛽⁄ 𝐵0(1 − 𝑏�̅�)
]

𝛽

 (21) 

where 𝑘 is a new constant, to obtain an alternative cumulative damage law: 

𝑑 =∑𝜙−1((
𝑁𝑖

𝑁𝑅
𝑖
)

1
1−𝛼

)

𝑖

 (22) 

For example, when referring to Fig. 3, the mapping 𝜙(𝑑) = 𝑑𝜂 can be used, leading to 

𝜙−1(𝑑∗) = 𝑑∗1 𝜂⁄
.  

Both nonlinear cumulative damage rules expressed in (7) and (17) can be used in lieu and 
place of the (sometimes too conservative) linear Miner's rule (6). 

3.3 Estimation of lifetime ratios for triaxial complex loading 

From now on, only sinusoidal unidirectional loading of known load characteristics (∆𝜎, �̅�) have 
been considered. Methods, based on predicting the number of cycles to rupture for elementary 
periodical loading, were given for estimating damage. With the objective evaluating structures, 

such as primary-circuit piping devices, where the stress tensor 𝝈(𝑥, 𝑡) in each point 𝑥 and at 
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each time 𝑡, cannot be assumed to be unidirectional, additional developments are needed. 
Considering more complex triaxial load-cases is the purpose of current subsection. 

Unfortunately, no general methodology suited to any arbitrary triaxial stress-state 𝝈(𝑥, 𝑡) has 
been found. However, two approaches, requiring a few hypothesis on the loading, have been 
derived and are presented below. 

3.3.1 Approach 1: triaxial proportional loading 

In this first approach, it is assumed that the thermal loading can take any arbitrary values but 
is known in a deterministic manner (see Fig. 6). Additionally, one assumes that the thermal 
loading generates for the studied structure a constant stress state distribution; one talks about 

proportional loading. More precisely, from a FE perspective, at each Gauss point 𝑥𝑔, for each 

time 𝑡, the stress tensor 𝝈(𝑥𝑔, 𝑡) will be assumed to be proportional to a constant time-

independent tensor 𝚺𝑔 such that: 

𝝈(𝑥𝑔, 𝑡) = 𝚺𝑔𝜎𝑔(𝑡) (23) 

where 𝜎𝑔(𝑡) is a scalar function of time potentially different from one Gauss point to another. 

Note that the matrix 𝚺𝑔 must be normalized in some manner. In this work, we choose (𝚺𝑔)𝑒𝑞
=

1, using the equivalent Von Mises stress (∙)𝑒𝑞. 

This last hypothesis is rather restrictive: it could correspond to the case of an elliptic 
thermomechanical problem with for example a rise in temperature and thermal expansion of 
the medium submitted to constant mechanical and flux boundary conditions. Note that for 
example, no parabolic thermo-mechanical problem can be treated using this approach since it 
would defeat hypothesis (23). The thermal fluctuations considered must guarantee that the 
hypothesis (23) holds, by imposing for example that the thermal flux or temperature boundary 
conditions are applied in a synchronous manner. In other words, transient variations of the 
thermal loading must be expressed using a single real-valued function 𝑓(𝑡). 
 

 

Fig. 6: Thermal loading #1 - Known arbitrary loading. 

Once the thermo-mechanical problem is solved, the proportional stress distribution 𝚺𝑔𝜎𝑔(𝑡) is 

known for each Gauss point. The problem being linear and stationary, only one FE 
computation is needed for accessing to the initial stress field 𝚺𝒈𝜎𝑔(𝑡0), the complete stress 

time histories is proportional to 𝑓(𝑡). For each Gauss point, the signal 𝜎𝑔(𝑡) can now be 

decomposed using rainbow counting method that gives access to the different number of 

cycles (𝑁𝑖)𝑖 endured under corresponding load characteristics (∆𝜎𝑔
𝑖 , �̅�𝑔

𝑖)
𝑖
.  

One can then use the charts identified in section 3.1, compute the different number of cycles 

to rupture 𝑁𝑅
𝑖 = 𝒲(∆𝜎𝑔

𝑖 , �̅�𝑔
𝑖 ; 𝜽) and characterize the damage state as 𝑑𝑔

𝑖 = 𝑁𝑖 𝑁𝑅
𝑖⁄ . Final 

damage value is then computed using one of the previously described damage cumulative 

laws (6) or (20). For Miner's cumulative law, we have for each Gauss point: 𝑑𝑔 = ∑ 𝑑𝑔
𝑖

𝑖 . 
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This first approach to the HCF damage evaluation is summed up in Fig. 7.  
 
 

 

Fig. 7: Preliminary thermal loading - Approach #1 - Computation of 𝑑𝑔 for each Gauss points. 

 

3.3.2 Approach 2: triaxial non-proportional repetitive loading 

A second approach is now proposed to relax the too restrictive proportional loading hypothesis 
(23). As explained in section 3.3.1, having such a stress-state at the Gauss points level implies 
that the loading can be described by a unique time function 𝑓(𝑡) and that no transient 

phenomenon can modify the stress pattern 𝚺𝑔.  

In this second approach, we consider the thermal loading to be described by a given number 
of independent functions contained in a vector 𝒇(𝑡) and enable transient thermal phenomena 
(conduction for example) to occur such that the stress-state in the continuous medium can 
take any arbitrary values (stress tensor of rank 6) relaxing the proportional loading hypothesis.  

The Wöhler charts 𝒲(∆𝜎, �̅�; 𝜽) identified in section 3.1 for unidimensional sinusoidal loading 
cannot be used in a straightforward manner anymore. However, a triaxial extension can be 
defined using the amplitude of the octahedral shear stress and the mean hydrostatic stress 
following the general idea proposed by [Sines, 1959]. Let here recall that in the uniaxial case, 
the fatigue limit is expressed as: 

∆𝜎

2
≤ σ0

∞(1 − 𝑏�̅�) (24) 

where irreversibility limit stress at the right of the inequation has the classical affine 

dependency in the mean stress level 𝜎. Based on the observation that, for a vast range of 
metals submitted to many different load conditions, the mean shear stress has no effect on the 
tension fatigue limit nor on the torsion fatigue limit, whereas mean stress has a linear influence 
on the fatigue limit in tension and in torsion, Sines proposed a triaxial fatigue limit criterion 

involving the octahedral shear stress 𝐴𝐼𝐼 =
1

2
(∆𝝈′)𝑒𝑞 and the mean hydrostatic stress �̅�𝐻 for 

respectively playing the role of Δ𝜎 2⁄  and �̅� 3⁄ : 

1

2
(∆𝝈′)𝑒𝑞 ≤ σ0

∞(1 − 3𝑏�̅�𝐻) (25) 

where  ⋆ ′ and ⋆𝐻 stand for the deviatoric and hydrostatic parts of tensor ⋆.  

Considering a medium studied on the time-interval 𝐷𝑡 = [0, 𝑇] with non-proportional loading 
stress-state, the octahedral shear stress 𝐴𝐼𝐼  is computed as: 

𝐴𝐼𝐼 =
1

2
(∆𝝈′)𝑒𝑞 =

1

2
max
𝑡0∈𝐷𝑡

max
𝑡∈𝐷𝑡

(𝝈(𝑡) − 𝝈(𝑡0))𝑒𝑞 (26) 

and the mean hydrostatic stress as: 
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�̅�𝐻 = mean
1

3
tr 𝝈 =

1

6
(max
𝑡∈𝐷𝑡

tr 𝝈(𝑡) + min
𝑡∈𝐷𝑡

tr 𝝈(𝑡)) (27) 

with ‘tr’ the trace operator.  

Following the same idea, Wöhler relations for predicting the number of cycles to rupture for 

triaxial loading can simply be adapted computing 𝒲((∆𝝈′)𝑒𝑞 , 3�̅�𝐻; 𝜽) using the functions 𝒲 

and the parameters introduced and identified in section 3.1. Thereby, the triaxial extension of 
the model (9) proposed by [Chaboche and Lesne, 1988] yields: 

𝑁𝑅 = 𝒲(𝐴𝐼𝐼 , �̅�𝐻; 𝜽) =  
𝜎𝑈∗ − 𝐴𝐼𝐼

𝐴𝐼𝐼 − σ0
∞(1 − 3𝑏�̅�𝐻)

[
𝐴𝐼𝐼

𝐵0(1 − 3𝑏�̅�𝐻)
]
−𝛽

 (28) 

and the relation (16) proposed in this work becomes: 

𝑁𝑅 = 𝒲(𝐴𝐼𝐼 , �̅�𝐻; 𝜽) =  10
𝑛0−𝜓𝑐

−1(tan(
𝐴𝐼𝐼− 𝜎𝑈∗

𝐴 )+tan−1(−𝜓𝑐(−𝑛0)))
 

(29) 

with: 

𝐴 =  
𝜎𝑈∗ − σ0

∞(1 − 3�̅�𝐻)

Π 2⁄ + tan−1(−𝜓𝑐(−𝑛0))
 (30) 

Note that nonlinear cumulative damage relation can also be obtained doing the same kind of 
substitution in equation (17). Also note that this relation was initially derived by [Chaudonneret, 
1993] and has also been used by other authors for the study of Titanium alloys [Marmi et al., 
2009]. Alternatively to what is proposed above, when comparing the stress state to the ultimate 

stress 𝜎𝑈, the classical Von-Mises or Hill equivalent stresses can be used in eq. (28) 
(numerator) and for defining 𝛼 in (17).  

Remark. Different lifetime predictions 𝑁𝑅  for complex triaxial load cases can also be obtained 
involving different classical fatigue limit indicators such as Crossland or Dang-Van criteria 
instead of Sines criterion (25) used here.  

One thus have a methodology capable of predicting the number 𝑁𝑅 to rupture , a given 

elementary, non-necessarily sinusoidal triaxial stress-state (of support 𝐷𝑡) can be repeated on 
a REV. Of course, in the perspective of counting the repetitions of this elementary loading, this 
latter should only be made of one simple pattern, that could be possibly assimilated to a ‘load 
cycle’. This last hypothesis might be too restrictive in real-life applications. Furthermore, the 
objective was precisely to avoid the too simplistic sinusoidal-like loading case.  

Let us then assume that the loading to be repeated, called Block on Fig. 8, is composed of 𝑃 
elementary pattern called Phases. 
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Fig. 8: Thermal loading #2 - Repetition of �̂� blocks composed of P known phases. 

Let us recall that the loading in current approach is described by a vector 𝒇 associated to 
different kinds of load factors (temperature fluctuations, nominal regime, boundary conditions 
variations in terms of flux or temperature accounting for valve opening, etc.) and that transient 
thermal variations leading to non-proportional stress-state can occur during those phases. 

Then, for each phase 𝑝, the stress state 𝛔𝑔
(𝑝)(𝑡) in each Gauss point can be evaluated solving 

the associated linear thermo-mechanical FE problem and a corresponding number of cycles 

to failure 𝑁𝑅,𝑔
(𝑝)
= 𝒲(𝐴𝐼𝐼,𝑔

(𝑝)
, �̅�𝐻,𝑔
(𝑝)
; 𝜽) can be evaluated. Finally, the complete damage state at 

Gauss point 𝑔, accounting for the 𝑃 consecutive phases, can be estimated using linear or 
nonlinear cumulative damage rules (see subsection 3.1) assuming that the block 

(𝑃ℎ𝑎𝑠𝑒𝑠(𝑝))
𝑝=1

𝑃
 is repeated �̂� times. For example, when assuming linearly cumulative damage, 

for each Gauss point, the damage value is computed as:  

𝑑𝑔 = ∑
�̂�

𝑁𝑅,𝑔
(𝑝)

𝑃

𝑝=1

 (31) 

Fig. 9 gives a graphical description of this second original approach for the computation of 
damage at the Gauss points level. 
 
 

 

Fig. 9: Preliminary thermal loading - Approach #2 - Computation of 𝑑𝑔 for each Gauss points. 
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3.4 Synthesis 

In this section, two approaches have been proposed for the computation of the damage pattern 
after a nominal thermal loading (see Fig. 7 and Fig. 9). The duration of the loading itself is 
unknown and will be one of the demand parameters for the construction of the fragility curves. 

For this preliminary thermal study, the damage state 𝑑(𝑥𝑔, 𝑡𝑆) of HCF origin in each Gauss 

point is computed from the knowledge of the stress distribution 𝝈(𝑥𝑔, 𝑡) given by a linear 3D 

FE calculation and after interpolation of reference Wöhler curves.  

The predicted damage pattern 𝑑(𝑥𝑔, 𝑡𝑆), described as a lifetime ratio, must now be translated 

into an initial damage 𝐷(𝑥𝑔, 𝑡𝑆) in conformity with the continuum damage mechanics 

framework. In what follows, as implicitly suggested by the work of [Chaboche and Lesne, 1988] 
and also described in [Lemaitre et al., 2009], a simple function 𝜙 will be used for relating the 
two damage descriptions: 

𝐷 = 𝐷𝑐𝜙(𝑑),  with {
𝜙(0) = 0

𝜙(1) = 1
 (32) 

where 𝐷𝑐 is the critical damage threshold. Fig. 3 gives an illustration of such a function 

choosing 𝜙(𝑑) = 𝑑𝜂. An alternative choice, still guided by [Chaboche and Lesne, 1988], can 

be made writing 𝜙(𝑑) = 1 − (1 − 𝑑𝜂). In this work, for AISI 304L SS, no reference value for 

𝜂 could be identified due to lack of experimental data, but values within [3; 10] seem to be 
reasonable options.  

Let one recall that the two damage descriptions are assembled in a unique comprehensive 
framework for conducting the seismic analysis but are nonetheless associated to different 
phenomena. In the HCF thermal phase, irreversibilities occur at the micro-scale for large load 
cycles as the material should behave in the elastic regime. Micro-cracks appear, grow and 
spread, but no plasticity at the meso-scale is involved. Thus, the seismic analysis of the 
structure detailed in following section 4 involves a nonlinear elastoplastic model for AISI 304L 
SS where damage growth is governed by plasticity at the meso-scale and the procedure is 

initialized considering, in each Gauss point, an initial damage value 𝐷(𝑥𝑔, 𝑡𝑆) =

𝐷𝑐 𝜙 (𝑑(𝑥𝑔, 𝑡𝑆)) and identically null plasticity internal variables. 

  



NARSIS Project (Grant Agreement No. 755439) D2.2 

- 21 - 

4 Nonlinear seismic response – Final damage pattern 

This section details the dynamic nonlinear calculations to be conducted for seismic analysis 
under LCF assumption. Section 4.1, starts with the description of the elastoplastic model 
[Marquis, 1989, Chaboche, 1989, Lemaitre et al., 2009] used in conjunction with Lemaitre's 
damage evolution law governed by plasticity [Lemaitre and Desmorat, 2005], describing the 
constitutive material of the studied piping element. Section 4.2 gives details on the 
identification of the constitutive parameters for AISI 304L SS from the experimental references 
of Table 2. Finally, the nonlinear solver with MOR capabilities is briefly described in section 
4.3. 

4.1 Elastoplastic model including isotropic damage description 

The model is expressed within the standard generalized material framework with internal 
variables describing the evolution of the elasticity/plasticity boundary and associated damage. 
One thus introduces the internal variables and their dual counterparts gathered in Table 5. 

 

Table 5: Dual and primal internal variables used for LCF modeling. 

Dual variables Primal variables Description 

𝝈 𝝐𝑝 Stress and plastic strain tensors 

𝜷 𝜶 Dual and primal kinematic hardening tensors 

𝑅 𝑟 Dual and primal isotropic hardening tensors 

𝑌 𝐷 Elastic energy density and damage variable 

 

In a Maxwell context,  the elastic and plastic strain tensors, respectively 𝝐𝑒 and  𝝐𝑝, verify: 𝝐 =
𝝐𝑒 + 𝝐𝑝. When damage occurs, as already introduced in (3), the effective stress on the REV 
becomes: 

�̃� =
𝝈

1 − 𝐷
 (33) 

Alternatively, to account for crack closure phenomena, as introduced in [Bhattacharyya et al., 
2019], the following definition can be used: 

�̃� =
𝝈′

1 − 𝐷
+ [

〈𝜎𝐻〉

1 − 𝐷
− 〈−𝜎𝐻〉] 𝟏 (34) 

where 〈⋆〉 = max(⋆ ,0) extracts positive part. Elasticity relation using �̃� and classical Hooke's 

tensor 𝔼 writes: 

�̃� = 𝔼: 𝝐𝑒 (35) 

and elastic energy density 𝑌 reads: 

𝑌 =
1

2
𝝐𝑒: 𝔼: 𝝐𝑒 =

1

2
�̃�: 𝔼−1: �̃� = 𝑅�̃�

(�̃�)𝑒𝑞
2

2𝐸
 (36) 

using the triaxiality function 𝑅�̃� =
2

3
(1 + 𝜈) + 3(1 − 2𝜈)〈�̃�𝐻 (�̃�)𝑒𝑞⁄ 〉2 associated to effective 

stress. 

The evolution of the elastic domain is described in the stress space, using kinematic and 

isotropic hardening variables 𝛽 and 𝑅, by the means of the plastic threshold function: 

𝑓 = (
𝝈′

1 − 𝐷
− 𝜷)

𝑒𝑞

− 𝑅(𝑟) − 𝜎𝑌    ,     with    {
𝑓 < 0 ∶ elasticity
𝑓 ≥ 0 : plasticity

 (37) 
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where 𝜎𝑌 is the yield threshold constant. Linear or nonlinear constitutive relations then link 
primal (𝜶, 𝑟) and dual (𝜷, 𝑅) variables. For kinematic hardening, one considers: 

𝜷 =
2

3
𝐶𝜶 (38) 

and for isotropic hardening, one of those classical relations can be used: 

𝑅(𝑟) = 𝐾𝑟𝑘 (39) 

𝑅(𝑟) = 𝑅∞[1 − exp(−𝜌𝑟)] (40) 

One then introduces the potential dissipative function 𝐹 such as: 

𝐹 = 𝑓 + 𝐹𝛽 + 𝐹𝐷 (41) 

𝐹𝛽 is a potential function needed for nonlinear kinematic hardening description which involves 

a new material parameter 𝛾 such that: 

𝐹𝛽 =
3𝛾

4𝐶
𝜷:𝜷 (42) 

𝐹𝐷, in turn, is the damage potential function written after Lemaitre's damage evolution law and 

involving two new material parameters 𝑠 and 𝑆: 

𝐹𝐷 =
𝑆

(𝑠 + 1)(1 − 𝐷)
(
𝑌

𝑆
)
𝑠+1

 (43) 

The evolution laws are then obtained by using the normality rule and introducing the plastic 
multiplier 𝜆. The following relations can then be obtained: 

�̇�𝑝 = �̇�
𝜕𝐹

𝜕𝝈
=

�̇�

1 − 𝐷

𝜕𝑓

𝜕�̃�
=

3�̇�

2(1 − 𝐷)

�̃� − 𝜷

(�̃� − 𝜷)𝑒𝑞
= �̇�√

3

2
�̃� (44) 

�̇� = −�̇�
𝜕𝐹

𝜕𝑅
⟹ �̇� = �̇� (45) 

�̇� = −�̇�
𝜕𝐹

𝜕𝜷
=
3

2
�̇� [

�̃� − 𝜷

(�̃� − 𝜷)𝑒𝑞
−
𝛾

𝐶
𝜷] ⟹ �̇� = (1 − 𝐷)(�̇�𝑝 − �̇�𝛾𝜶) (46) 

where the cumulative plastic strain 𝑝 is introduced and verifies: 

�̇� = √
2

3
�̇�𝑝: �̇�𝑝 =

�̇�

1 − 𝐷
√
2

3

𝜕𝑓

𝜕�̃�
:
𝜕𝑓

𝜕�̃�
⟹ �̇� = (1 − 𝐷)�̇�  (47) 

and using the unit normal to plastic domain �̃� defined such as: 

�̃� = √
2

3

𝜕𝑓

𝜕�̃�
 (48) 



NARSIS Project (Grant Agreement No. 755439) D2.2 

- 23 - 

The evolution of the damage variable, in turn, is governed by plasticity and is written according 
to Lemaitre's law: 

�̇� = −�̇�
𝜕𝐹𝐷
𝜕𝑌

  ⟹  {�̇� = �̇� (
𝑌

𝑆
)
𝑠

   if  𝓌 ≥ 𝓌𝐷

�̇� = 0               otherwise

 

𝐷 = 𝐷𝐶   ⟹   meso-crack initiation 

(49) 

In (49), the criterion for damage evolution is written on the stored energy 𝓌𝑆  defined as: 

𝓌𝑆 = ∫ (𝑅�̇� + 𝜷: �̇�)d𝑡
𝑡

0

 (50) 

Note that, according to e.g. [Lemaitre and Desmorat, 2005], for sinusoidal LCF load cases, an 

alternative criterion on plastic cumulative deformation 𝑝 ≥ 𝑝𝐷 is generally used in (49). The 
criterion 𝑝𝐷 in this case is application-dependent and is given in function of the applied loading 
(∆𝝈)𝑒𝑞 = 𝜎𝑒𝑞,𝑚𝑎𝑥 + 𝜎𝑒𝑞,𝑚𝑖𝑛. For more complex inputs like seismic loading with richer non-

steady state spectral content, the stored energy criterion must be used. In [Lemaitre and 
Desmorat, 2005] however, a modified stored energy is defined for writing the damage initiation 
criterion. Indeed, in order to prevent the isotropic term from soaring when performing time-
integration and balancing the weight of the two isotropic- and kinematic-hardening terms, one 
considers: 

�̅�𝑆 = ∫ (𝑅(𝑟)𝓏(𝑟)�̇� + 𝜷: �̇�)d𝑡
𝑡

0

 (51) 

with 𝓏(𝑟) = 𝐴𝑟𝑚 introducing two new material constants 𝐴 and 𝑚. A complete illustration of 
the regular vs. modified stored energy behavior will be given later in section 4.2.2.  Let just 
note that his change redefines two new thermodynamical internal variables (𝑞, 𝑄) verifying: 
𝑄(𝑞) = 𝑅(𝑟) and d𝑞 = 𝓏(𝑟)d𝑟.  

The temporal resolution of these constitutive relations is performed using an adapted radial 
return algorithm (see e.g. [Simo and Hughes, 1998] for more details on such algorithm for 
plasticity). 

4.2 Identification of material parameters 

This subsection details how material parameters are identified for AISI 304L SS (THY) from 
experimental data contained in refs. of Table 2. Some material parameters, contained in Table 
6, are well documented in many references and can be considered as reliably known. 
 

Table 6: AISI 304L SS (THY) reliably known monotonic properties after [Colin et al., 2011; Kweon et al., 2021]. 

𝐸 Young’s modulus 1.92 x 105 MPa 

𝜈 Poisson’s ratio 0.3 

𝜎0,2
𝑌  Yield stress 0:2% offset 202 MPa 

𝜎𝑈 Ultimate tensile strength 608 MPa 

𝜖𝐷
𝑝
 Uniform elongation (ultimate) 0.665 

𝜎𝑅 Rupture tensile strength 288 MPa 

𝜖𝑅
𝑝
 Total elongation (rupture) 0.858 

𝑍 Reduction in area (rupture) 0.864 

 

Let one assume that the unknown parameters involved in the constitutive relations of section 
4.1 are gathered in a vector 𝜼. These parameters describing first plasticity and second, the 
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damage process, will be identified based on the tests-results set ℛ = {𝑇, 𝐶10, 𝐶1, 𝐶2} of refs. 
in Table 2, where uniaxial deformation time histories 𝜖𝑥𝑥(𝑡) is imposed to material samples. 

For each experiment 𝑟 ∈ ℛ, one compares the model predictions ℳ(𝜖𝑥𝑥
𝑟 (𝜏 ≤ 𝑡); 𝜼) with 

available stress measurement 𝜎𝑥𝑥
𝑟 (𝑡) and build the cost function: 

𝒥(𝜼) = ∑ ∑ 𝓌𝑡
𝑟‖ℳ(𝜖𝑥𝑥

𝑟 (𝜏 ≤ 𝑡); 𝜼) − 𝜎𝑥𝑥
𝑟 (𝑡)‖2

𝑡∈𝐷𝑡
𝑟

cardℛ

𝑟=1

 (52) 

taking into account the experimental database ℛ as a whole and introducing some weighting 
𝓌𝑟 for favoring the reproduction of the LCF tests 𝐶1 and 𝐶2. The functional 𝒥 is then minimized 

w.r.t 𝜼 using classical Nonlinear Least-Squares (NLS) minimization techniques from initial 
guess 𝜼0. Model predictions associated to optimal values �̂� are compared with reference 
experiments in Fig. 10. 

Upcoming sections 4.2.1 and 4.2.2 discuss the results, detail identification when needed and 
give the values of the identified parameters. 

4.2.1 Parameters describing plasticity 

In this subsection, only plasticity is considered, i.e. no damage is taken into account (𝐷 = 0 in 

constitutive equations of subsection 4.1) and experimental curves {𝑇, 𝐶1, 𝐶2} of Fig. 10 are 
cropped for isolating the pre-peak part. 

A first minimization was launched following the lines and equations of section 4.1 (with 
constant 𝐶 and 𝛾 parameters), enabling good reproduction of the cyclic test [𝐶10]. However 
the tensile test [𝑇] and cyclic responses [𝐶1] and [𝐶2] could not be satisfactorily reproduced. 
Let one notice that AISI 304L SS is known for presenting primary and secondary hardening, 
visible in Fig. 10 on [𝐶1] and [𝐶2]. In the uniaxial case, an analytical expression of the stress 
amplitude is given by: 

∆𝜎

2
=
2𝐶

3𝛾
tanh(𝛾

∆𝜖𝑝

2
) + 𝜎𝑌 + 𝑅(𝑝) (53) 

Assuming that 𝑝 ≈ 2𝑁∆𝜖𝑝, one can readily see that only one hardening phenomenon can be 

reproduced by 𝑅(𝑝) on the ∆𝜎 2⁄  vs. 𝑁 curves of Fig. 10a and b. Hence, in this work, as also 
suggested by [Lemaitre et al., 2009, p.226], we consider variable kinematic hardening 

coefficients 𝐶(𝑝) and 𝛾(𝑝), function of the cumulative plastic deformation 𝑝. The objective 

introducing a new dependence in 𝑝 is to reproduce both primary and secondary hardening. 
The Armstrong-Frederick relation becomes: 

�̇� =
2

3
𝐶(𝑝) �̇�𝑝 − 𝛾(𝑝) �̇� 𝜷 (54) 

From a thermodynamical point of view, the functions 𝐶(𝑝) and 𝛾(𝑝) must respectively be 
increasing and decreasing functions. In this work, the following parametrization is adopted, to 
allow slow variations of the kinematic hardening parameters with respect to 𝑝: 

𝐶(𝑝) = 𝐶0 + ∆𝐶(1 − 𝑒
−𝜅𝐶𝑝) (55) 

𝛾(𝑝) = 𝛾∞ + ∆𝛾𝑒
−𝜅𝛾𝑝 (56) 

Table 7 collects the parameters identified in the NLS sense choosing alternatively power and 
exponential law for 𝑅(𝑝) and producing similar results. The plots of Fig. 10 are realized for 

parameters in the central column of Table 7 specifying power law for 𝑅(𝑝).  

One can note here that the plastic part of the tensile curve [𝑇] is fairly well reproduced and 

that both cyclic tests [𝐶1] and [𝐶2] show very good accordance with the experimental 
reference, modelling both primary and secondary hardening phenomena. On the 10 cycles 
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test [𝐶10] however, even if extreme values of 𝜎𝑥𝑥 are very satisfactory, on can observe on Fig. 
10b that loops are only partially well reproduced with this set of parameters. One shall remark, 
that this difference will not change the extreme values of the kinematic hardening part of the 
stored energy which is written as a function of the maximum value of 𝜷 on each cycle in the 
uniaxial case: 

𝓌𝑆,𝑘𝑖𝑛𝑒 = ∫ 𝜷: �̇�d𝑡
𝑡

0

=
4𝐶

3
𝛽𝑚𝑎𝑥
2 (𝑡) (57) 

Hence, this will not affect the damage criterion too much, only within one cycle indeed, but not 
from cycles to cycles, since extreme values of ∆𝜎 2⁄  and therefore 𝜷 are well reproduced. 
Additional illustration of this claim is given in next section. 

 

  
(a) Tensile test 𝑇 - [Kweon et al., 2021] 

Imposed monotonic strain to rupture 
(b) 10 cycles 𝐶10 - [Kpodekon et al., 2009] 

±2% imposed strain over 10 cycles 

  
(c) Cyclic test 𝐶1 - [Colin et al., 2011] 

±2% imposed strain to rupture 
(d) Cyclic test 𝐶2 - [Colin et al., 2011] 

±1% imposed strain to rupture 

Fig. 10: Experimental results (blue curves) vs. best NLS  fitted model predictions (red curves) for the four 
experimental refs. of Table 2. 
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Table 7: Optimal plasticity parameters for AISI 304L SS w.r.t. experimental refs. In Table 2 - Nonlinear kinematic 

hardening with variable 𝛾(𝑝) and 𝐶(𝑝) - Power and exponential law for isotropic hardening. 

Plasticity Parameters Power law (39) Exponential law (40) 

𝜎𝑌 154 MPa 181 MPa 

Iso. Hard. constant 1.73 MPa (𝐾) 1.00 x 103 MPa (𝑅∞) 

Iso. Hard. exponent 0.9844 (𝑘) 1.88 x 10-3 (𝜌) 

𝐶0 1.15 x 104 MPa 2.94 x 103 MPa 

∆𝐶 3.50 x 104 MPa 3.63 x 104 MPa 

𝜅𝐶 8.958 12.8 

𝛾∞ 34.6 13.8 

∆𝛾 44.6 56.1 

𝜅𝛾 0.121 0.105 

Relative LS error 0.87% 1.66% 

 

4.2.2 Parameters describing damaging process 

Now that the plastic part of the cyclic tests is correctly reproduced, a calibration of the threshold 
on the stored energy is needed for setting the start of the damaging phase. In this section, the 
plots refer to power law (39) for isotropic hardening. Fig. 11 shows a plot of the stored energy 
𝓌𝑆(𝑝) in its original version: 

𝓌𝑆 = ∫ 𝑅�̇�d𝑡
𝑡

0⏟    
isotropic hardening

contribution

+ ∫ 𝜷: �̇�d𝑡
𝑡

0⏟      
kinematic hardening

contribution

 
(58) 

When performing the integration (𝑟 = 𝑝 because no damage is involved in the pre-peak part), 
with a power law, the isotropic hardening term becomes: 

𝓌𝑆,𝑖𝑠𝑜(𝑝) =
𝐾

𝑘+1
𝑝𝑘+1 (59) 

For kinematic hardening, one has: 

𝓌𝑆,𝑘𝑖𝑛𝑒(𝑝) =
4𝐶

3
𝜷:𝜷 (60) 

 which becomes a periodic function when 𝜷 saturates. One can clearly see on Fig. 11 that the 
stored energy is dominated by the isotropic hardening contribution (when compared to the 
kinematic hardening oscillatory part) to the point that no common damage initiation criterion 
can be written for the material using this definition. 

As described in section 4.1, a change in variables is introduced to temperate the isotropic 
hardening contribution. The isotropic part of the stored energy then becomes for power law: 

�̅�𝑆,𝑖𝑠𝑜 = ∫ 𝑅(𝑝)𝓏(𝑝)�̇�d𝑡
𝑡

0

=
𝐾𝐴

𝑘 +𝑚 + 1
𝑝𝑘+𝑚+1 (61) 

With 𝓏(𝑝) = 𝐴𝑝𝑚.  

Let one introduce 𝑝𝐷
𝑇 = 0.665, 𝑝𝐷

1 = 13.8 and 𝑝𝐷
2 = 24.5, the cumulative plastic strains for which 

damage occurs for each of the three tests {𝑇, 𝐶1, 𝐶2}. One now identifies the couple of 

coefficients (𝐴,𝑚) that enable (if possible) the same corrected stored energy for each test, i.e. 

�̅�𝑆(𝐴,𝑚, 𝑝𝐷
𝑇) = �̅�𝑆(𝐴,𝑚, 𝑝𝐷

1 ) = �̅�𝑆(𝐴,𝑚, 𝑝𝐷
2). NLS minimization is involved once again and Fig. 

12 shows the results obtained with optimal parameters 𝐴 = 0.7052 and 𝑚 = −1.574. One can 
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notice that the corrected stored energy now reaches similar values for tests [𝐶1] and [𝐶2] but 
the algorithm fails at identifying a pair (𝐴,𝑚) guaranteeing that the tensile test damages for 
similar level. One can note regarding this last observation, that the regimes are very different 
for tensile and cyclic tests. For tensile test, plastic strain value at the beginning of damage 

equals the cumulative plastic strain 𝜖𝐷
𝑝
= 𝑝𝐷

𝑇 = 0.665. The value 0.665 reached is huge for 

plastic strain but small for cumulative plastic strain compared to cyclic tests. The identified 
value does not enable to reproduce the damaging tensile test [𝑇] (as can also be observed on 
Fig. 10a) but leads to appropriate threshold definition for high amplitude cyclic test, which is 
the range under focus for seismic analysis. 

 

 

 

Fig. 11: Original stored energy 𝓌𝑆(𝑝) (zoom on the right). 

 

Fig. 12: Corrected stored energy �̅�𝑆(𝑝) (zoom on the right). 

One now needs to identify the parameters (𝑠, 𝑆) of Lemaitre's damage law (49) from the 
damaging part (post-peak) of the cyclic tests. Several NLS minimization have been performed 
once again with different initial values leading this time to many correct and different optimal 
parameters in the sense of the NL cost-function involved. From the recommended value 

[Lemaitre and Desmorat, 2005] (𝑠 = 2, 𝑆 = 2 MPa), the optimal value (�̂� = 2, �̂� = 1.70 MPa) 
was given by the algorithm. The reconstructed damaging part is visible on Fig. 10 and the 
parameters associated to damage evolution are collected in Table 8. 

Let one note once again that the tensile test could not easily be reproduced with that set of 

values for (𝑠, 𝑆) even if the values (𝐴,𝑚) were changed to more appropriate ones. Indeed, as 
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was said previously in this section, even if large 𝜖𝑝 values are achieved, the cumulative plastic 
strain remains modest and would require respectively higher s and smaller 𝑆 values for 
reproducing the damaging part of curve Fig. 10a. Tensile test, especially the damaging part 
where large deformation are expected, falls outside the scope of this study. 
 

Table 8: Optimal damage parameters for AISI 304L SS with respect to experimental refs. In Table 2 – To be used 
with isotropic hardening power law (39). 

𝐴 0.7052 

𝑚 -1.574 

𝓌𝐷 11.9 MPa 

𝑆 1.7 MPa 

𝑠 2 

Relative LS error 0.87% 

 

4.3 The LATIN-PGD solver in a nutshell 

Now that all material parameters have been identified, the nonlinear dynamics problem must 
be solved many times for different inputs and configurations. At this stage, one shall recall that 
the AISI 304L SS medium under study was submitted to a preliminary low level HCF loading 
of thermal origin that has led to a preliminary damage pattern in each Gauss point 𝑔. This 

preliminary pattern 𝐷(𝑥𝑔, 𝑡𝑆) has been computed using one of the two approaches described 

in section 3 and making the classical distinction between micro-scale damage for low-level 
HCF loading where no meso-scale plasticity is involved, and meso-scale damage governed 
by plasticity. All the internal variables describing meso-scale plasticity will be considered 
identically null at time 𝑡𝑆 when the seismic event occurs. 

Let one thus consider the domain Ω ∈ ℝ3 of Fig. 13, 
on the time domain 𝐼 = [𝑡𝑆, 𝑡𝐹], with constant 

boundary 𝜕Ω = ∂𝑁Ω⨁∂𝐷Ω over time and which 
behavior is described by the constitutive relations of 
subsection 4.1. This structure is submitted to 

surface forces 𝒇𝑁 on ∂𝑁Ω ×  𝐼 (Neumann boundary 

conditions), to imposed displacements 𝒖𝑁 on ∂𝐷Ω ×
 𝐼 (Dirichlet boundary condition) and to volume 
forces 𝒇 on  Ω ×  𝐼. 

According to the internal variables of Table 5, 
required to describe the constitutive relations 
(damage governed by plasticity), the solution 𝑺 over 

the whole space-time domain 𝐼⨂Ω writes 𝑺 =
(𝒖, 𝝐, 𝝈, 𝝐𝒑, 𝜷, 𝜶, 𝑌, 𝐷), where this condensed 
notation contains the values of the different solution 
fields at each point 𝑥 of domain Ω and each time 𝑡 
of 𝐼.  

 

 

Fig. 13: The mechanical domain under study. 

Unlike step-by-step methods, which seek the solution 𝑺𝑘+1 at time 𝑡𝑘+1 from the knowledge of 
solution 𝑺𝑘 at time 𝑡𝑘, using a Newton-like algorithm to handle non-linearity and integration 
schemes (like Newmark scheme in dynamics) for time-integration, the LATIN method is an 

iterative solver that, from a kinematically and dynamically admissible initial elastic solution 𝑺(0), 
consists in calculating successive nonlinear corrections until convergence is reached. Note 

that both initial solution 𝑺(0)and successive iterates 𝑺(𝑛) are calculated over the whole time-
space domain 𝐼⨂Ω. For this purpose, one defines an admissibility space 𝚨d where kinematic 

relations and loading boundary conditions are satisfied and a manifold 𝚪 on which nonlinear 
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constitutive relations are verified. The sought solution 𝑺 lies at the intersection between both 
spaces 𝚪 and 𝚨d, as illustrated on Fig. 14.  

From the initial admissible solution 𝑺(0) ∈ 𝚨d, the LATIN method consists in finding the solution 
𝑺 ∈ 𝚪 ∩ 𝚨d in an iterative process composed of nonlinear stages (local in time and space), 

providing a prediction �̂�(𝑛+
1
2) ∈ 𝚪, and linear stages (global over the whole space-time domain), 

providing an approximation 𝑺(𝑛+1) ∈ 𝚨d. The iterative search, starting from the elastic solution 

𝑺(0), can be summarized by writing: 

𝑺(0) ∈ 𝚨d⋯⟶ 𝑺(𝑛) ∈ 𝚨d ⟶ �̂�(𝑛+
1
2) ∈ 𝚪 ⟶ 𝑺(𝑛+1) ∈ 𝚨d⋯⟶ 𝑺 ∈ 𝚪 ∩ 𝚨d (62) 

The jumps from one subspace to the other are enabled by search directions 𝔾 and 𝔸 as 
illustrated on Fig. 14. These search directions are parameters of the LATIN method but 
standard stiffness operators are classically involved. Many more details on the methodology 
can be found in [Ladevèze, 1999]. 

 

 

Fig. 14: Iterative resolution with search directions 𝔾 and 𝔸. 

Let one here mention that the nonlinear or local stage requires the simulation of the nonlinear 
constitutive relations (see section 4.1) for each time 𝑡 and each Gauss point 𝑥𝑔 in space. 

However, the computation of the primal and dual solution fields of �̂�(𝑛+
1
2) for each (𝑥𝑔, 𝑡) can 

be done in a parallel manner. At the linear stage, in turn, the admissibility relations (dynamic 
equilibrium of the structure) must be re-imposed on the whole time-space domain.  

From the knowledge of 𝑺(𝑛) and �̂�(𝑛+
1
2), the linearity of this global problem enables one to seek 

the solution increment ∆𝑺(𝑛) = 𝑺(𝑛+1) − 𝑺(𝑛) as a low rank approximation using the Proper 
Generalized Decomposition (PGD).  

Without going into more details, let one simply mention that, similarly to what can be done in 
dynamics when projecting equilibrium equations onto a truncated modal basis, the primal and 

dual fields of ∆𝑺(𝑛) are computed on a reduced basis composed of modes defined as a product 
of temporal and spatial functions. During the first iterations of the LATIN algorithm, new PGD 
modes must be computed, but, as the solver progresses, the systematic enrichment of the 
basis might not be needed anymore at the linear stage; in that case, the linear stage simply 
consists in computing temporal corrections on a truncated basis. More details about the PGD 
itself and the different possible implementation for transient problems can be found in [Nouy, 
2010] and many numerical applications of the PGD within the LATIN framework can be found 
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e.g. in [Relun et al., 2013; Néron et al., 2015; Heyberger et al., 2012; Vitse et al., 2019]. Let 
one also mention the recent application of the LATIN-PGD methodology in dynamics during 
the doctoral work of Sebastian Rodriguez-Iturra, (NARSIS WP4). 

Thus, the LATIN framework, with embedded PGD as model order reduction tool, enables to 
exploit the redundancy of information contained in transient solutions and is particularly suited 
for solving parametric problems. Indeed, let one assume that the problem is described with a 
given number of parameters contained in a vector 𝜼. More precisely, consider the case where 

ones seeks a set of solutions {𝑺1,⋯ , 𝑺𝑛𝑝} for a given previously defined parameter set 

{𝜼1,⋯ , 𝜼𝑛𝑝}  assumed to have ‘reasonably close’ values from one 𝜼𝑖 to another 𝜼𝑖+1. These 

parameters may be associated to the constitutive relations (manifold 𝚪) or to the loading 
(Admissibility 𝚨d). Fig. 15 gives a graphical illustration of both cases. 
 
 

  

Fig. 15: Iterative strategy used for handling parametric dependency. 

 

An efficient strategy can be defined for dealing with this kind of parametric dependency. 

Assuming that a set of solutions {𝑺1, ⋯ , 𝑺𝑖}  is already computed, if the two vectors 𝜼𝑖 and 𝜼𝑖+1 
(describing e.g. nonlinear part of constitutive relations) are sufficiently close, the associated 

spaces 𝚪𝑖  and 𝚪𝑖+1 will also be close. So, rather than initializing the solution 𝑺𝑖+1 to the space-
time solution of the equivalent elastic problem as the classical LATIN approach suggests it, 
the already converged solution 𝑺𝑖 can advantageously be chosen as starting point. The 

advantage of this approach is twofold: if 𝚪𝑖  and 𝚪𝑖+1 are close to each other, the number of 
iterations for computing  𝑺𝑖+1 from  𝑺𝑖 is drastically reduced (see Fig. 15a) and the set of PGD 
modes computed at previous steps can be reused. The same strategy can of course be 
adopted if parameters describe the loading (see Fig. 15b). 
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5 Synthesis of the approach – Fragility curves 

Now going back to our problem, for building the fragility curves, one needs to compute the 

probability 𝒫(‖𝐷‖∞ ≥ �̅�; 𝑎, �̂�), called probability of failure, that the maximum damaged area 

value ‖𝐷‖∞ exceeds a given threshold �̅� and this, for a given acceleration level 𝑎 and after �̂� 

repetitions of a nominal loading. Note that the threshold �̅� might be different from the limit 
damage value 𝐷𝐶 introduced previously and which corresponds to the appearance of meso-
cracks. For nuclear engineering application and safety analysis, a more conservative (lower) 
value might be chosen. 

The knowledge of a given seismic scenario (magnitude, distance-to-source, local shear wave 
velocity, etc.) leads to a collection of likely seismic inputs to apply to the structure or component 
under study. The literature for generating potential seismic inputs from seismic scenario is vast 
[Douglas and Aochi, 2008; Charbonnel, 2018] and can be based on regression techniques on 
complete seismic database (see e.g. NGA-PEER Database [Power et al., 2008; Chiou and 
Youngs, 2008; Baker and Jayaram, 2008; Boore and Atkinson, 2008; Abrahamson and Silva, 
2008] in California or RESORCE Database [Akkar et al., 2014] in Europe), on single recordings 
or spectral specifications (see e.g. [Rezaeian and Der Kiureghian, 2008; Rezaeian and Der 
Kiureghian, 2010; Lancieri et al., 2012; Yamamoto and Baker, 2011; Zentner et al., 2013; 
Rossetto et al., 2016; Lancieri et al., 2018]) or on full physics-based propagation modelling 
(see e.g. [Zerva, 1988; Gatti et al., 2018]). To account for the huge variability of the possible 
ground motion inputs and according to the different earthquake resistant design 
recommendations for civil constructions [EUROCODE-8, 2004; Bisch et al., 2012; Elghazouli, 
2009; NEHRP, 2010], numerical models, together with their own uncertainties (material 
parameters), must be subjected, not only to a single seismic loading, but to a set of potential 
seismic inputs (see Fig. 16). Hence, the fragility curves imply the computation of quasi-identical 

nonlinear solutions 𝑺𝑖 associated to different input realizations 𝑎𝑖(𝑡) and thermal loading 

repetitions �̂�𝑖. As was already highlighted in the end of the previous subsection 4.3, the LATIN 
solver brings a particularly efficient framework for chaining the calculations, taking advantage 
of already computed PGD basis and similar solutions for initialization. The proposed strategy 
is graphically summed up on Fig. 16. 

Let one finally note that the sequencing of the computations within the LATIN-PGD framework 
can have a determinant impact on the final computational cost for obtaining the fragility curves. 
Indeed, nonlinear solutions in dynamics 𝑺𝑖 will be similar if the seismic inputs 𝑎𝑖(𝑡) are similar. 
In [Charbonnel, 2018], a two-stages strategy was proposed for modelling acceleration time- 
histories 𝑎𝑖(𝑡) using a given reduced number of parameters (of the order of twenty) arranged 

in a vector 𝝃. Signal envelope and time-frequency content are simultaneously modelled using 
respectively univariate and bivariate log-normal distributions as illustrated in Fig. 17. Of course, 

an infinity of temporal realizations can be generated for a given 𝝃, but they all lead to similar 
pseudo-spectral accelerations as exemplified in the above mentioned reference. One can 
therefore assume that two signals 𝑎𝑖(𝑡) and 𝑎𝑗(𝑡) with close parameters values 𝝃𝑖 and 𝝃𝑗, once 

filtered by the (nonlinear) structure, will lead to close solutions 𝑺𝑖 and 𝑺𝑗 . This parametrization 

can thus be used for a clever sequencing of computations resorting for example to kPCA-
based clustering techniques. 
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Fig. 16: Synthesis - Computation of fragility curves including nominal thermal ageing. 

 

 

Fig. 17: Signal modelling procedure proposed in [Charbonnel, 2018]. 
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6 Conclusions 

In this contribution, a novel strategy was presented for computing fragility curves including both 
external seismic input motion and nominal thermal loading duration accounting for the 
unknown time of occurrence of the potential earthquake event. The study is carried out on 
metallic materials in an original HCF/LCF framework. One of the principal achievement of this 
work, besides the derivation of the general methodology, is the identification of the material 
parameters associated to AISI 304L stainless steel, of which many NPP sensitive elements 
are made. Thus, Wöhler curve description in the HCF range and elastoplastic model according 
to the standard generalized material framework in the LCF range have been identified. The 
identified optimal parameters strongly depend on the (few) available test results that could be 
consulted as experimental reference. However, these parameters enabled to reproduce a wide 
range of tests. Furthermore, the proposed strategy would be perfectly adapted to different 
class of steels and other types of metals: preliminary identification should simply be required.  

Both approaches proposed for HCF enable to handle complex triaxial stress-state for metals 
and an empirical law is proposed for associating damage under the form of a lifetime ratio, to 
damage following the continuum damage mechanics framework. The LATIN-PGD method 
finally constitutes a favorable framework for the computation of the fragility curves combining 
both thermal HCF load duration and seismic loading. Clever initialization of the many solutions 
to compute, combined with efficient PGD reduced basis, make it a key asset for the 
computation of this numerical chart. More details and applications of this method can be found 
in [Rodriguez-Iturra, 2021] and in NARSIS deliverable D4.3. [Charbonnel 2022]. 
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