

## NARSIS Workshop



Training on Probabilistic Safety Assessment for Nuclear Facilities September 2-5, 2019, Warsaw, Poland



## Bayesian Networks – Practical Session

Varenya Kumar D Mohan, Delft University of Technology

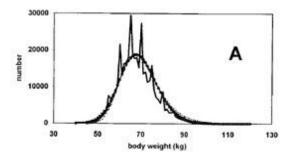


## Refresh Bayesian network (BN) building steps with an example

> Practical

Represent a problem with an uncertain outcome, in a BN

Use BN software to calculate the probabilities of different outcomes of interest


Understand how new evidence changes our current probability estimates



### **Probability Theory - Basics**

- Useful definitions:
- <u>*Random Variables*</u>: A variable whose possible values are outcomes of a random phenomenon.
  - $\Rightarrow$  Discrete RV: takes distinct, separate values e.g. outcomes of the roll of dice; X = {1, 2, 3, 4, 5, 6}
  - ⇒ Continuous RV: can take any value in a given range e.g. weight of a randomly selected person in Warsaw (not real data)
- <u>*Probability Distribution*</u>: Table, equation or graph that links each outcome with its probability of occurrence
  - $\Rightarrow$  e.g. X is a RV denoting outcome of a coin toss
- <u>Marginal Probability</u>: P(A), is the probability of a variable without reference to the values of the other variables in the problem domain.
- <u>Conditional Probability</u>: P(A | B), is the probability that A occurs given that B has occurred. It follows that:

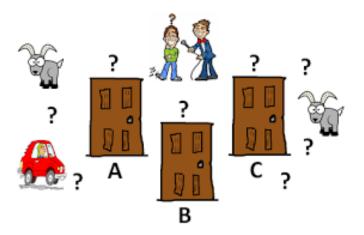
 $P(A \cap B)$  or P(AB) = P(BA) = P(A).P(B | A) = P(B).P(A | B)



| Value of<br>X | Probability of<br>Occurrence |
|---------------|------------------------------|
| Heads         | 0.5                          |
| Tails         | 0.5                          |

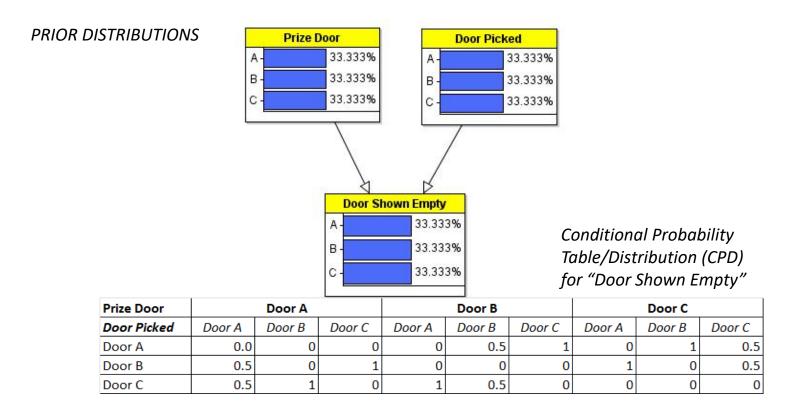


#### **Bayesian Networks**


A Bayesian network is a 'directed' (the dependence between variables is given by arrows) and acyclic (the arrows don't cycle back) probabilistic graphical model
Random variables represented by nodes
Dependencies given by arcs



#### BN Example – The Monty Hall Problem


#### Example of BN – The Monty-Hall Problem

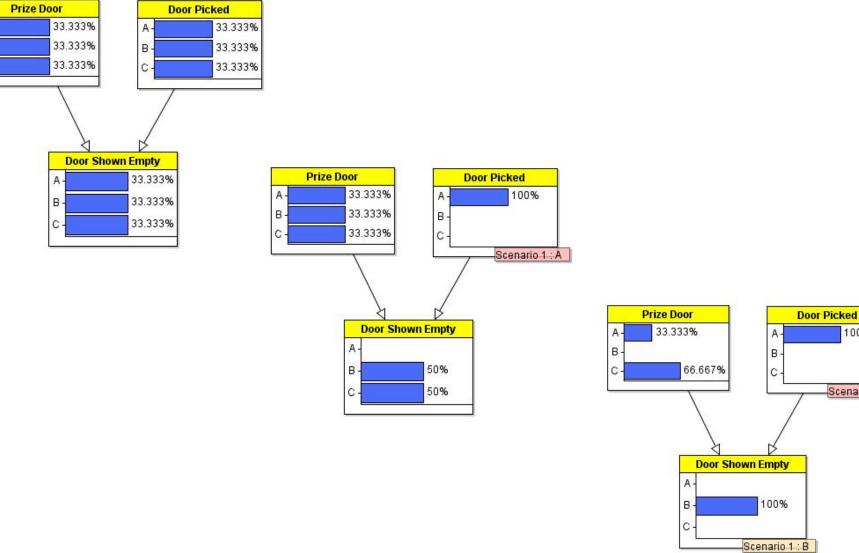
- □ You're on a game show. You're given a choice between three closed doors.
- □ There is a car behind one door, and nothing behind the other two.
- □ You want the car (usually), and choose one door, say Door A
- Monty, the host, knows what's behind each door. So he opens another door, say Door B which of course, is empty.
- Now you are asked to either stick with Door A or switch to Door C. What will you do?





#### BN Example – The Monty Hall Problem






A-

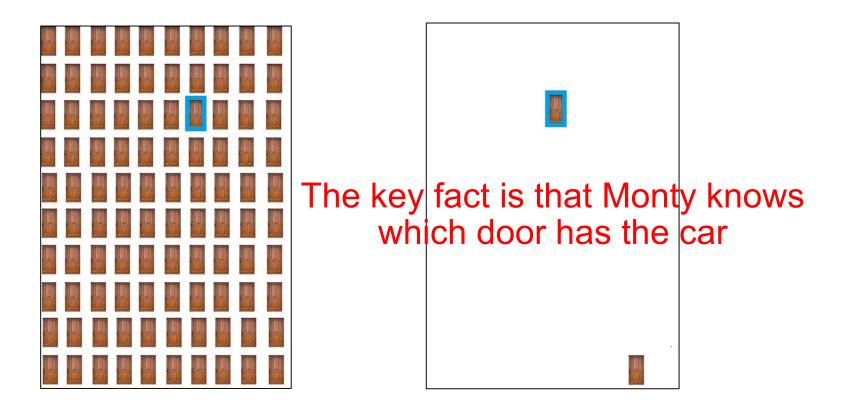
Β-

C

#### **BN Example – The Monty Hall Problem**



NARSIS WORKSHOP


September 2-5, 2019, Warsaw, Poland | Page 7

100%

Scenario 1 : A



#### **BN Example – The Monty Hall Problem**





#### **Practical - Problem**

- > EDG operating condition, Markov model
- Damage States D0 (new) to D6 (failure)
- For every passing year:
  - □ No change in damage state 40% of the time
  - □ Deterioration by one damage state 30%
  - Deterioration by two damage states 20%
  - Deterioration by three damage states 10%
- Model the damage progression of the EDG using a Bayesian network starting from when the EDG is new (Year0) to the end of a 5-year period (Year5)
- Q1. What is the accumulated probability of failure after 5 years?
- Q2. At the end of three years, a deterministic inspection is performed that definitively determines the condition of the EDG to be in D2. Given this information, the accumulated probability of failure 5 years?



#### **Practical - Hints**

- > EDG operating condition, Markov model
- Damage States D0 (new) to D6 (failure)
- For every passing year:
  - □ No change in damage state 40% of the time
  - □ Deterioration by one damage state 30%
  - Deterioration by two damage states 20%
  - Deterioration by three damage states 10%
- Model the damage progression of the EDG using a Bayesian network starting from when the EDG is new (Year0) to the end of a 5-year period (Year5)
- Q1. What is the accumulated probability of failure after 5 years?
- Q2. At the end of three years, a deterministic inspection is performed that definitively determines the condition of the EDG to be in D2. Given this information, the accumulated probability of failure 5 years?



#### **Practical - Hints**

Hints:

- Formulate random variables using 'Years' and 'Damage States', and the given probability values
- The discrete states of the variables should be able to directly answer Q1 and Q2.
- > The BN will have 6 discrete random variables.



### **Practical – Random Variables**

Which if these would be a good RV to use in the BN?

(Opt.1) DS - damage state of the EDG within the five year period

(Opt. 2) Yn – damage state of the EDG at the end of the nth year.

(Opt. 3) F5 – failure probability at the end of year 4



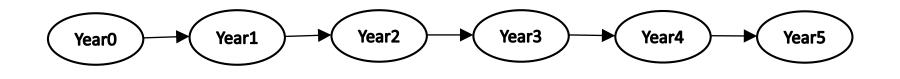
#### **Practical – Random Variables**

- Year0 is the damage state of the EDG at time 0 (EDG is new)
- Year1 is the damage state at the end of the first year

#### Hence, RVs in the BN are Year0, Year1...Year5

| Random Variable | States                     |
|-----------------|----------------------------|
| YearO           | D0                         |
| Year1           | D0, D1, D2, D3             |
| Year2           | D0, D1, D2, D3, D4, D5, D6 |
| Year3           | D0, D1, D2, D3, D4, D5, D6 |
| Year4           | D0, D1, D2, D3, D4, D5, D6 |
| Year5           | D0, D1, D2, D3, D4, D5, D6 |

NARSIS WORKSHOP


September 2-5, 2019, Warsaw, Poland | Page 13



#### **Practical – BN Structure**

## What is the dependence between the random variables Year0, Year1...Year5?

#### Markov chain



# If there is a circular dependence in the problem, BNs cannot be used (acyclic graphical model)







Bonus Q3. Instead of a deterministic inspection, now the inspection after two years has a probability of 0.4, 0.8, 0.9, 0.95, 0.98 and 1 of identifying states 1 to 6. This inspection does not detect anything. Now, what is the accumulated probability of failure 5 years?



#### **Bayesian Networks**

#### **Applications include**

- Finance
- Medical Diagnosis
- Speech Recognition
- Image Processing
- Spam Filtering
- Engineering Risk Assessment



#### **Bayesian Networks**





BNs are effective to represent problems with uncertain outcomes, e.g. risk assessments involving multiple dependent variables

Probabilistic estimates of outcome can be calculated based on prior 'beliefs'/probabilities obtained from data or expert judgement

Estimates can be updated based on new evidence

